Abstract
The purpose of this study is to identify the correspondence between distinct brain oscillatory activity acquired from electroencephalography (EEG) and blood oxygenation level dependent signals obtained from functional magnetic resonance imaging (fMRI). In this preliminary study, the changes in the mu rhythmic power (8-13Hz) during motor imagery tasks in the EEG data simultaneously acquired with fMRI data were examined. The average mu powers during the left-hand (LH)/right-hand (RH) motor imagery tasks were separately estimated after removing dominant artifacts, such as gradient artifact, ballistocardiogram artifact, and helium-pump artifact. As a result, the relatively lower mu power of the contralateral motor area during LH/RH motor imagery tasks was observed compared to ipsilateral side. This observation indicates a functional signature for motor imagery tasks.
Original language | English |
---|---|
Title of host publication | 3rd International Winter Conference on Brain-Computer Interface, BCI 2015 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781479974948 |
DOIs | |
Publication status | Published - 2015 Mar 30 |
Event | 2015 3rd International Winter Conference on Brain-Computer Interface, BCI 2015 - Gangwon-Do, Korea, Republic of Duration: 2015 Jan 12 → 2015 Jan 14 |
Publication series
Name | 3rd International Winter Conference on Brain-Computer Interface, BCI 2015 |
---|
Other
Other | 2015 3rd International Winter Conference on Brain-Computer Interface, BCI 2015 |
---|---|
Country/Territory | Korea, Republic of |
City | Gangwon-Do |
Period | 15/1/12 → 15/1/14 |
Bibliographical note
Publisher Copyright:© 2015 IEEE.
Keywords
- Electroencephalography (EEG)
- functional magnetic resonance imaging (fMRI)
- motor imagery
- mu rhythmic power
- simultaneous EEG-fMRI
ASJC Scopus subject areas
- Human-Computer Interaction
- Cognitive Neuroscience
- Sensory Systems