TY - GEN
T1 - Detecting cognitive states from fMRI images by machine learning and multivariate classification
AU - Fan, Yong
AU - Shen, Dinggang
AU - Davatzikos, Christos
PY - 2006
Y1 - 2006
N2 - The major obstacle in building classifiers that robustly detect a particular cognitive state across different subjects using fMRI images has been the high inter-subject functional variability in brain activation patterns. To overcome this obstacle, firstly, the brain regions that are relevant to the problem under study are determined from the training data; then, statistical information of each brain region is extracted to form regional features, which are robust to inter-subject functional variations within the brain region; finally, the regional feature statistical variations across different samples are further alleviated by a PCA technique. To improve the generalization ability and efficiency of the classification, from the extracted regional features, a hybrid feature selection method is utilized to select the most discriminative features, which are used to train a SVM classifier for decoding brain states from fMRI images. The performance of this method is validated in a deception fMRI study. The proposed method yielded better results compared to other commonly used fMRI image classification methods.
AB - The major obstacle in building classifiers that robustly detect a particular cognitive state across different subjects using fMRI images has been the high inter-subject functional variability in brain activation patterns. To overcome this obstacle, firstly, the brain regions that are relevant to the problem under study are determined from the training data; then, statistical information of each brain region is extracted to form regional features, which are robust to inter-subject functional variations within the brain region; finally, the regional feature statistical variations across different samples are further alleviated by a PCA technique. To improve the generalization ability and efficiency of the classification, from the extracted regional features, a hybrid feature selection method is utilized to select the most discriminative features, which are used to train a SVM classifier for decoding brain states from fMRI images. The performance of this method is validated in a deception fMRI study. The proposed method yielded better results compared to other commonly used fMRI image classification methods.
UR - http://www.scopus.com/inward/record.url?scp=33845538512&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33845538512&partnerID=8YFLogxK
U2 - 10.1109/CVPRW.2006.64
DO - 10.1109/CVPRW.2006.64
M3 - Conference contribution
AN - SCOPUS:33845538512
SN - 0769526462
SN - 9780769526461
T3 - Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
BT - 2006 Conference on Computer Vision and Pattern Recognition Workshop
T2 - 2006 Conference on Computer Vision and Pattern Recognition Workshops
Y2 - 17 June 2006 through 22 June 2006
ER -