Detection of DC voltages in multi-layered magnetic thin films undergoing ferromagnetic resonance

E. R. Park, D. K. Oh, Cheol Eui Lee, S. H. Kim, S. R. Lee, Y. K. Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In 1996, Berger (Phys. Rev. B vol. 54, p. 9354, 1996) predicted that a DC current crossing an interface between the normal and ferromagnetic layer would induce a precession of the magnetization in the ferromagnetic layer. Slonczewski (J. Magn. Magn. Mater. vol. 159, p. L1, 1996) has proposed a similar current-induced spin precession, as well as a switching of the magnetization between two different static directions. Tsoi et al. (Phys. Rev. Lett. vol. 80, p. 4281, 1998) have also obtained experimental evidence of such spin precession, in a Cu/Co multilayer traversed by a current normal to layers at 4 K. Recently, the inverse effect has been theoretically predicted by Berger and Slonczewski independently (L. Berger, Phys. Rev. B vol. 59, p. 11465, 1999). When an external microwave is absorbed under a ferromagnetic resonance (FMR) condition, precession of the magnetization will generate a DC voltage across the normal/ferromagnetic multilayer. In this work, we report the experimental results supporting such DC voltage generation.

Original languageEnglish
Title of host publicationINTERMAG Europe 2002 - IEEE International Magnetics Conference
EditorsJ. Fidler, B. Hillebrands, C. Ross, D. Weller, L. Folks, E. Hill, M. Vazquez Villalabeitia, J. A. Bain, Jo De Boeck, R. Wood
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)0780373650, 9780780373655
DOIs
Publication statusPublished - 2002
Event2002 IEEE International Magnetics Conference, INTERMAG Europe 2002 - Amsterdam, Netherlands
Duration: 2002 Apr 282002 May 2

Publication series

NameINTERMAG Europe 2002 - IEEE International Magnetics Conference

Other

Other2002 IEEE International Magnetics Conference, INTERMAG Europe 2002
Country/TerritoryNetherlands
CityAmsterdam
Period02/4/2802/5/2

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Electrical and Electronic Engineering
  • Surfaces, Coatings and Films

Fingerprint

Dive into the research topics of 'Detection of DC voltages in multi-layered magnetic thin films undergoing ferromagnetic resonance'. Together they form a unique fingerprint.

Cite this