TY - GEN
T1 - Developing novel weighted correlation kernels for convolutional neural networks to extract hierarchical functional connectivities from fMRI for disease diagnosis
AU - Jie, Biao
AU - Liu, Mingxia
AU - Lian, Chunfeng
AU - Shi, Feng
AU - Shen, Dinggang
N1 - Funding Information:
Acknowledgments. This study was supported by NSFC (61573023, 61703301), NIH grants (EB006733, EB008374, EB009634, MH100217, AG041721, AG042599, AG010129, AG030514).
Publisher Copyright:
© Springer Nature Switzerland AG 2018.
PY - 2018
Y1 - 2018
N2 - Functional magnetic resonance imaging (fMRI) has been widely applied to analysis and diagnosis of brain diseases, including Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Traditional methods usually construct connectivity networks (CNs) by simply calculating Pearson correlation coefficients (PCCs) between time series of brain regions, and then extract low-level network measures as features to train the learning model. However, the valuable observation information in network construction (e.g., specific contributions of different time points) and high-level (i.e., high-order) network properties are neglected in these methods. In this paper, we first define a novel weighted correlation kernel (called wc-kernel) to measure the correlation of brain regions, by which weighting factors are determined in a data-driven manner to characterize the contribution of each time point, thus conveying the richer interaction information of brain regions compared with the PCC method. Furthermore, we propose a wc-kernel based convolutional neural network (CNN) (called wck-CNN) framework for extracting the hierarchical (i.e., from low-order to high-order) functional connectivities for disease diagnosis, by using fMRI data. Specifically, we first define a layer to build dynamic CNs (DCNs) using the defined wc-kernels. Then, we define three layers to extract local (region specific), global (network specific) and temporal high-order properties from the constructed low-order functional connectivities as features for classification. Results on 174 subjects (a total of 563 scans) with rs-fMRI data from ADNI suggest that the our method can not only improve the performance compared with state-of-the-art methods, but also provide novel insights into the interaction patterns of brain activities and their changes in diseases.
AB - Functional magnetic resonance imaging (fMRI) has been widely applied to analysis and diagnosis of brain diseases, including Alzheimer’s disease (AD) and its prodrome, i.e., mild cognitive impairment (MCI). Traditional methods usually construct connectivity networks (CNs) by simply calculating Pearson correlation coefficients (PCCs) between time series of brain regions, and then extract low-level network measures as features to train the learning model. However, the valuable observation information in network construction (e.g., specific contributions of different time points) and high-level (i.e., high-order) network properties are neglected in these methods. In this paper, we first define a novel weighted correlation kernel (called wc-kernel) to measure the correlation of brain regions, by which weighting factors are determined in a data-driven manner to characterize the contribution of each time point, thus conveying the richer interaction information of brain regions compared with the PCC method. Furthermore, we propose a wc-kernel based convolutional neural network (CNN) (called wck-CNN) framework for extracting the hierarchical (i.e., from low-order to high-order) functional connectivities for disease diagnosis, by using fMRI data. Specifically, we first define a layer to build dynamic CNs (DCNs) using the defined wc-kernels. Then, we define three layers to extract local (region specific), global (network specific) and temporal high-order properties from the constructed low-order functional connectivities as features for classification. Results on 174 subjects (a total of 563 scans) with rs-fMRI data from ADNI suggest that the our method can not only improve the performance compared with state-of-the-art methods, but also provide novel insights into the interaction patterns of brain activities and their changes in diseases.
UR - http://www.scopus.com/inward/record.url?scp=85054552914&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-00919-9_1
DO - 10.1007/978-3-030-00919-9_1
M3 - Conference contribution
AN - SCOPUS:85054552914
SN - 9783030009182
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 1
EP - 9
BT - Machine Learning in Medical Imaging - 9th International Workshop, MLMI 2018, Held in Conjunction with MICCAI 2018, Proceedings
A2 - Liu, Mingxia
A2 - Suk, Heung-Il
A2 - Shi, Yinghuan
PB - Springer Verlag
T2 - 9th International Workshop on Machine Learning in Medical Imaging, MLMI 2018 held in conjunction with the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018
Y2 - 16 September 2018 through 16 September 2018
ER -