Abstract
Climate polarization due to global warming has increased the intensity of drought in some regions, and the need for drought estimation studies to help minimize damage is increasing. In this study, we constructed remote sensing and climate data for Boryeong, Chungcheongnam-do, Korea, and developed a model for drought index estimation by classifying data characteristics and applying multiple linear regression analysis. The drought indices estimated in this study include four types of standardized precipitation indices (SPI1, SPI3, SPI6, and SPI9) used as meteorological drought indices and calculated through cumulative precipitation. We then applied statistical analysis to the developed model and assessed its ability as a drought index estimation tool using remote sensing data. Our results showed that its adj.R2 value, achieved using cumulative precipitation for one month, was very low (approximately 0.003), while for the SPI3, SPI6, and SPI9 models, the adj.R2 values were significantly higher than the other models at 0.67, 0.64, and 0.56, respectively, when the same data were used.
Original language | English |
---|---|
Article number | 3393 |
Journal | Water (Switzerland) |
Volume | 12 |
Issue number | 12 |
DOIs | |
Publication status | Published - 2020 Dec |
Bibliographical note
Funding Information:Funding: This research was supported by a grant (2019-MOIS31-010) from the Fundamental Technology Development Program for Extreme Disaster Response, funded by the Korean Ministry of Interior and Safety (MOIS).
Funding Information:
This research was supported by a grant (2019-MOIS31-010) from the Fundamental Technology Development Program for Extreme Disaster Response, funded by the Korean Ministry of Interior and Safety (MOIS).
Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Boryeong
- Drought index
- Landsat
- Multiple linear regression model
- Remote sensing data
- SPI
ASJC Scopus subject areas
- Biochemistry
- Geography, Planning and Development
- Aquatic Science
- Water Science and Technology