Development of practical design approaches for water distribution systems

Young Hwan Choi, Ho Min Lee, Jiho Choi, Do Guen Yoo, Joong Hoon Kim

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)


The optimal design of water distribution systems (WDSs) should be economical, consider practical field applicability, and satisfy hydraulic constraints such as nodal pressure and flow velocity. However, the general optimal design of a WDSs approach using a metaheuristic algorithm was difficult to apply for achieving pipe size continuity at the confluence point. Although some studies developed the design approaches considering the pipe continuity, these approaches took many simulation times. For these reasons, this study improves the existing pipe continuity search method by reducing the computation time and enhancing the ability to handle pipe size continuity at complex joints that have more than three nodes. In addition to more practical WDSs designs, the approach considers various system design factors simultaneously in a multi-objective framework. To verify the proposed approach, the three well-known WDSs to apply WDS design problems are applied, and the results are compared with the previous design method, which used a pipe continuity research algorithm. This study can reduce the computation time by 87% and shows an ability to handle complex joints. Finally, the application of this practical design technique, which considers pipe continuity and multiple design factors, can reduce the gap between the theoretical design and the real world because it considers construction conditions and abnormal situations.

Original languageEnglish
Article number5117
JournalApplied Sciences (Switzerland)
Issue number23
Publication statusPublished - 2019 Dec 1

Bibliographical note

Funding Information:
This subject is supported by the Korea Ministry of Environment as "Global Top project (2016002120004)" and the National Research Foundation of Korea (NRF) as "Postdoctoral research fellow Training abroad program (2019R1A6A3A03031896)".

Publisher Copyright:
© 2019 by the authors. Licensee MDPI, Basel, Switzerland.


  • Improved efficiency and effect
  • Multi-objective optimization
  • Practical design approach
  • Water distribution systems

ASJC Scopus subject areas

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes


Dive into the research topics of 'Development of practical design approaches for water distribution systems'. Together they form a unique fingerprint.

Cite this