Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients

Tanzina Huq, Khanh Dang Vu, Bernard Riedl, Jean Bouchard, Jaejoon Han, Monique Lacroix

    Research output: Contribution to journalArticlepeer-review

    40 Citations (Scopus)

    Abstract

    The objective of this study is to develop a probiotic tablet formulation based on alginate, pectin, and cellulose nanocrystals (CNC) that can preserve high viability of a probiotic bacterium, Lactobacillus rhamnosus ATCC 9595, in gastrointestinal media as well as during storage. A central composite design including three independent biopolymeric material factors (alginate, pectin, and CNC) was applied, and 18 tablet formulations containing probiotic cells were formed. The optimized probiotic tablet based on alginate, pectin, and CNC showed 84 % cell viability after sequential transition through gastrointestinal media, whereas probiotic tablets prepared with alginate, pectin, and CNC individually showed only 19, 17, and 10 % probiotic viability, respectively. Swelling study also revealed that the optimized tablet underwent less dissolution in gastric solution (pH 1.5) and continuous dissolution in intestinal solution (pH 7). The optimized probiotic tablet was stored at 25 and 4 °C for up to 42 days, revealing a reduction of only 0.4 and 0.2 log colony forming units (CFU)/tablet, respectively, after 42 days.

    Original languageEnglish
    Pages (from-to)1967-1978
    Number of pages12
    JournalCellulose
    Volume23
    Issue number3
    DOIs
    Publication statusPublished - 2016 Jun 1

    Keywords

    • Alginate
    • Cellulose nanocrystals
    • Central composite design
    • Pectin
    • Probiotic tablet

    ASJC Scopus subject areas

    • Polymers and Plastics

    Fingerprint

    Dive into the research topics of 'Development of probiotic tablet using alginate, pectin, and cellulose nanocrystals as excipients'. Together they form a unique fingerprint.

    Cite this