Abstract
Image inpainting is an old problem in computer vision that restores occluded regions and completes damaged images. In the case of facial image inpainting, most of the methods generate only one result for each masked image, even though there are other reasonable possibilities. To prevent any potential biases and unnatural constraints stemming from generating only one image, we propose a novel framework for diverse facial inpainting exploiting the embedding space of StyleGAN. Our framework employs pSp encoder and SeFa algorithm to identify semantic components of the StyleGAN embeddings and feed them into our proposed SPARN decoder that adopts region normalization for plausible inpainting. We demonstrate that our proposed method outperforms several state-of-the-art methods.
Original language | English |
---|---|
Title of host publication | 2022 IEEE International Conference on Image Processing, ICIP 2022 - Proceedings |
Publisher | IEEE Computer Society |
Pages | 1141-1145 |
Number of pages | 5 |
ISBN (Electronic) | 9781665496209 |
DOIs | |
Publication status | Published - 2022 |
Event | 29th IEEE International Conference on Image Processing, ICIP 2022 - Bordeaux, France Duration: 2022 Oct 16 → 2022 Oct 19 |
Publication series
Name | Proceedings - International Conference on Image Processing, ICIP |
---|---|
ISSN (Print) | 1522-4880 |
Conference
Conference | 29th IEEE International Conference on Image Processing, ICIP 2022 |
---|---|
Country/Territory | France |
City | Bordeaux |
Period | 22/10/16 → 22/10/19 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
Keywords
- Facial Image Inpainting
- Pluralistic Image Inpainting
- StyleGAN Inversion
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition
- Signal Processing