Dipyrenylcalix[4]arene-A fluorescence-based chemosensor for trinitroaromatic explosives

Young Hoon Lee, Hongguang Liu, Jin Yong Lee, Sang Hoon Kim, Sung Kuk Kim, Jonathan L. Sessler, Yang Kim, Jong Seung Kim

Research output: Contribution to journalArticlepeer-review

168 Citations (Scopus)


A new chemosensor-based approach to the detection of nitroaromatics is described. It involves the analyte-induced quenching of excimer emission of a dipyrenyl calix[4]arene (L). The chemical and photophysical properties of the complexes formed between L and mono-, di-, and trinitrobenzene, and di- and trinitrotoluene were studied in acetonitrile and chloroform by using 1H NMR, UV/Vis, and fluorescence spectroscopy. Fluorescence spectroscopy revealed that the trinitroaromatics engendered the largest response among the various substrates tested, with the sensitivity for these analytes being correspondingly high. Quantitative analysis of the fluorescence titration profile generated from the titration of L with TNT provided evidence that this particular functionalized calix[4]arene receptor allows for the detection of TNT down to the low ppb level in CH3CN. A single-crystal X-ray diffraction analysis revealed that in the solid state the complex L·TNT consists of a supramolecular crystalline polymeric structure, the formation of which appears to be driven by intermolecular π-π interactions between two pyrene units and a TNT molecule held at a distance of 3.2-3.6 Å, as well as by intra- and intermolecular hydrogen-bonds among the amide linkages. Nevertheless, the changes in the 1H NMR, UV/Vis, and fluorescence spectrum, including sharp color changes, are ascribed to a chargetransfer interaction arising from complementary π-π overlap between the pyrene subunits and the bound trinitroaromatic substrates. A number of ab initio calculations were also carried out and, considered in concert, they provide further support for the proposed charge-transfer interactions, particularly in the case of L·TNT.

Original languageEnglish
Pages (from-to)5895-5901
Number of pages7
JournalChemistry - A European Journal
Issue number20
Publication statusPublished - 2010 May 25


  • Calixarenes
  • Density functional calculations
  • Fluorescence
  • Nitroaromatics
  • Sensors

ASJC Scopus subject areas

  • Catalysis
  • Organic Chemistry


Dive into the research topics of 'Dipyrenylcalix[4]arene-A fluorescence-based chemosensor for trinitroaromatic explosives'. Together they form a unique fingerprint.

Cite this