Discrete Minimal Nets with Symmetries

Joseph Cho, Wayne Rossman, Seong Deog Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this paper, we extend the notion of Schwarz reflection principle for smooth minimal surfaces to the discrete analogues for minimal surfaces, and use it to create global examples of discrete minimal nets with high degree of symmetry.

Original languageEnglish
Title of host publicationMinimal Surfaces
Subtitle of host publicationIntegrable Systems and Visualisation - Workshops, 2016-19
EditorsTim Hoffmann, Martin Kilian, Katrin Leschke, Francisco Martin
PublisherSpringer
Pages35-50
Number of pages16
ISBN (Print)9783030685409
DOIs
Publication statusPublished - 2021
EventWorkshop Series of Minimal Surfaces: Integrable Systems and Visualisation, 2016-19 - Cork, Ireland
Duration: 2017 Mar 272017 Mar 29

Publication series

NameSpringer Proceedings in Mathematics and Statistics
Volume349
ISSN (Print)2194-1009
ISSN (Electronic)2194-1017

Conference

ConferenceWorkshop Series of Minimal Surfaces: Integrable Systems and Visualisation, 2016-19
Country/TerritoryIreland
CityCork
Period17/3/2717/3/29

Bibliographical note

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Keywords

  • Discrete minimal nets
  • Reflection principle

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Discrete Minimal Nets with Symmetries'. Together they form a unique fingerprint.

Cite this