TY - GEN
T1 - Distributed online leader selection in the bilateral teleoperation of multiple UAVs
AU - Franchi, Antonio
AU - Bülthoff, Heinrich H.
AU - Robuffo Giordano, Paolo
PY - 2011
Y1 - 2011
N2 - For several applications like data collection, surveillance, search and rescue and exploration of wide areas, the use of a group of simple robots rather than a single complex robot has proven to be very effective and promising, and the problem of coordinating a group of agents has received a lot of attention over the last years. In this paper, we consider the challenge of establishing a bilateral force-feedback teleoperation channel between a human operator (the master side) and a remote multi-robot system (the slave side) where a special agent, the leader, is selected and directly controlled by the master. In particular, we study the problem of distributed online optimal leader selection, i.e., how to choose, and possibly change, the leader online in order to maximize some suitable criteria related to the tracking performance of the whole group w.r.t. the master commands. Human/hardware-in-the-loop simulation results with a group of UAVs support the theoretical claims of the paper.
AB - For several applications like data collection, surveillance, search and rescue and exploration of wide areas, the use of a group of simple robots rather than a single complex robot has proven to be very effective and promising, and the problem of coordinating a group of agents has received a lot of attention over the last years. In this paper, we consider the challenge of establishing a bilateral force-feedback teleoperation channel between a human operator (the master side) and a remote multi-robot system (the slave side) where a special agent, the leader, is selected and directly controlled by the master. In particular, we study the problem of distributed online optimal leader selection, i.e., how to choose, and possibly change, the leader online in order to maximize some suitable criteria related to the tracking performance of the whole group w.r.t. the master commands. Human/hardware-in-the-loop simulation results with a group of UAVs support the theoretical claims of the paper.
UR - http://www.scopus.com/inward/record.url?scp=84860684007&partnerID=8YFLogxK
U2 - 10.1109/CDC.2011.6160944
DO - 10.1109/CDC.2011.6160944
M3 - Conference contribution
AN - SCOPUS:84860684007
SN - 9781612848006
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 3559
EP - 3565
BT - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2011 50th IEEE Conference on Decision and Control and European Control Conference, CDC-ECC 2011
Y2 - 12 December 2011 through 15 December 2011
ER -