TY - JOUR
T1 - Disulfide bond influence on protein structural dynamics probed with 2D-IR vibrational echo spectroscopy
AU - Ishikawa, Haruto
AU - Kim, Seongheun
AU - Kwak, Kyungwon
AU - Wakasugi, Keisuke
AU - Fayer, Michael D.
PY - 2007/12/4
Y1 - 2007/12/4
N2 - Intramolecular disulfide bonds are understood to play a role in regulating protein stability and activity. Because disulfide bonds covalently link different components of a protein, they influence protein structure. However, the effects of disulfide bonds on fast (subpicosecond to ≈100 ps) protein equilibrium structural fluctuations have not been characterized experimentally. Here, ultrafast 2D-IR vibrational echo spectroscopy is used to examine the constraints an intramolecular disulfide bond places on the structural fluctuations of the protein neuroglobin (Ngb). Ngb is a globin family protein found in vertebrate brains that binds oxygen reversibly. Like myoglobin (Mb), Ngb has the classical globin fold and key residues around the heme are conserved. Furthermore, the heme-ligated CO vibrational spectra of Mb (Mb-CO) and Ngb (Ngb-CO) are virtually identical. However, in contrast to Mb, human Ngb has an intramolecular disulfide bond that affects its oxygen affinity and protein stability. By using 2D-IR vibrational echo spectroscopy, we investigated the equilibrium protein dynamics of Ngb-CO by observing the CO spectral diffusion (time dependence of the 2D-IR line shapes) with and without the disulfide bond. Despite the similarity of the linear FTIR spectra of Ngb-CO with and without the disulfide bond, 2D-IR measurements reveal that the equilibrium sampling of different protein configurations is accelerated by disruption of the disulfide bond. The observations indicate that the intramolecular disulfide bond in Ngb acts as an inhibitor of fast protein dynamics even though eliminating it does not produce significant conformational change in the protein's structure.
AB - Intramolecular disulfide bonds are understood to play a role in regulating protein stability and activity. Because disulfide bonds covalently link different components of a protein, they influence protein structure. However, the effects of disulfide bonds on fast (subpicosecond to ≈100 ps) protein equilibrium structural fluctuations have not been characterized experimentally. Here, ultrafast 2D-IR vibrational echo spectroscopy is used to examine the constraints an intramolecular disulfide bond places on the structural fluctuations of the protein neuroglobin (Ngb). Ngb is a globin family protein found in vertebrate brains that binds oxygen reversibly. Like myoglobin (Mb), Ngb has the classical globin fold and key residues around the heme are conserved. Furthermore, the heme-ligated CO vibrational spectra of Mb (Mb-CO) and Ngb (Ngb-CO) are virtually identical. However, in contrast to Mb, human Ngb has an intramolecular disulfide bond that affects its oxygen affinity and protein stability. By using 2D-IR vibrational echo spectroscopy, we investigated the equilibrium protein dynamics of Ngb-CO by observing the CO spectral diffusion (time dependence of the 2D-IR line shapes) with and without the disulfide bond. Despite the similarity of the linear FTIR spectra of Ngb-CO with and without the disulfide bond, 2D-IR measurements reveal that the equilibrium sampling of different protein configurations is accelerated by disruption of the disulfide bond. The observations indicate that the intramolecular disulfide bond in Ngb acts as an inhibitor of fast protein dynamics even though eliminating it does not produce significant conformational change in the protein's structure.
KW - FTIR
KW - Neuroglobin
KW - Ultrafast 2D-IR
UR - http://www.scopus.com/inward/record.url?scp=37649012488&partnerID=8YFLogxK
U2 - 10.1073/pnas.0709760104
DO - 10.1073/pnas.0709760104
M3 - Article
C2 - 18042705
AN - SCOPUS:37649012488
SN - 0027-8424
VL - 104
SP - 19309
EP - 19314
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 49
ER -