Abstract
Microalgae are versatile organisms capable of converting CO 2, H 2 O, and sunlight into fuel and chemicals for domestic and industrial consumption. Thus, genetic modifications of microalgae for enhancing photosynthetic productivity, and biomass and bio-products generation are crucial for both academic and industrial applications. However, targeted mutagenesis in microalgae with CRISPR-Cas9 is limited. Here we report, a one-step transformation of Chlamydomonas reinhardtii by the DNA-free CRISPR-Cas9 method rather than plasmids that encode Cas9 and guide RNAs. Outcome was the sequential CpFTSY and ZEP two-gene knockout and the generation of a strain constitutively producing zeaxanthin and showing improved photosynthetic productivity.
Original language | English |
---|---|
Article number | 30620 |
Journal | Scientific reports |
Volume | 6 |
DOIs | |
Publication status | Published - 2016 Jul 28 |
ASJC Scopus subject areas
- General