Does manual delineation only provide the side information in CT prostate segmentation?

Yinghuan Shi, Wanqi Yang, Yang Gao, Dinggang Shen

Research output: Chapter in Book/Report/Conference proceedingConference contribution

17 Citations (Scopus)

Abstract

Prostate segmentation, for accurate prostate localization in CT images, is regarded as a crucial yet challenging task. Nevertheless, due to the inevitable factors (e.g., low contrast, large appearance and shape changes), the most important problem is how to learn the informative feature representation to distinguish the prostate from non-prostate regions. We address this challenging feature learning by leveraging the manual delineation as guidance: the manual delineation does not only indicate the category of patches, but also helps enhance the appearance of prostate. This is realized by the proposed cascaded deep domain adaptation (CDDA) model. Specifically, CDDA constructs several consecutive source domains by employing a mask of manual delineation to overlay on the original CT images with different mask ratios. Upon these source domains, convnet will guide better transferrable feature learning until to the target domain. Particularly, we implement two typical methods: patch-to-scalar (CDDA-CNN) and patch-to-patch (CDDA-FCN). Also, we theoretically analyze the generalization error bound of CDDA. Experimental results show the promising results of our method.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention − MICCAI 2017 - 20th International Conference, Proceedings
EditorsLena Maier-Hein, Alfred Franz, Pierre Jannin, Simon Duchesne, Maxime Descoteaux, D. Louis Collins
PublisherSpringer Verlag
Pages692-700
Number of pages9
ISBN (Print)9783319661780
DOIs
Publication statusPublished - 2017
Event20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017 - Quebec City, Canada
Duration: 2017 Sept 112017 Sept 13

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10435 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Other

Other20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017
Country/TerritoryCanada
CityQuebec City
Period17/9/1117/9/13

Bibliographical note

Funding Information:
Acknowledgement. This work was supported by NSFC (61673203, 61432008, 61603193), NIH Grant (CA206100), and Young Elite Scientists Sponsorship Program by CAST (YESS 20160035).

Publisher Copyright:
© Springer International Publishing AG 2017.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint

Dive into the research topics of 'Does manual delineation only provide the side information in CT prostate segmentation?'. Together they form a unique fingerprint.

Cite this