Abstract
Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra-and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-Target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.
Original language | English |
---|---|
Title of host publication | 7th International Winter Conference on Brain-Computer Interface, BCI 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781538681169 |
DOIs | |
Publication status | Published - 2019 Feb |
Event | 7th International Winter Conference on Brain-Computer Interface, BCI 2019 - Gangwon, Korea, Republic of Duration: 2019 Feb 18 → 2019 Feb 20 |
Publication series
Name | 7th International Winter Conference on Brain-Computer Interface, BCI 2019 |
---|
Conference
Conference | 7th International Winter Conference on Brain-Computer Interface, BCI 2019 |
---|---|
Country/Territory | Korea, Republic of |
City | Gangwon |
Period | 19/2/18 → 19/2/20 |
Bibliographical note
Funding Information:This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451; Development of BCI based Brain and Cognitive Computing Technology for Recognizing User’s Intentions using Deep Learning).
Publisher Copyright:
© 2019 IEEE.
Keywords
- Brain-Computer Interface
- Deep Learning
- Domain Adaptation
- Electroencephalogram (EEG)
- Motor Imagery
- Transfer Learning
ASJC Scopus subject areas
- Artificial Intelligence
- Human-Computer Interaction
- Signal Processing
- Neuroscience (miscellaneous)