TY - GEN
T1 - Domain-Invariant Prior Knowledge Guided Attention Networks for Robust Skull Stripping of Developing Macaque Brains
AU - Zhong, Tao
AU - Zhang, Yu
AU - Zhao, Fenqiang
AU - Pei, Yuchen
AU - Liao, Lufan
AU - Ning, Zhenyuan
AU - Wang, Li
AU - Shen, Dinggang
AU - Li, Gang
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Non-human primates, especially macaque monkeys, with close phylogenetic relationship to humans, are highly valuable and widely used animal models for human neuroscience studies. In neuroimaging analysis of macaques, brain extraction or skull stripping of magnetic resonance imaging (MRI) is a crucial step for following processing. However, the current skull stripping methods largely focus on human brains, and thus often lead to unsatisfactory results when applying to macaque brains, especially for macaque brains during early development. In fact, the macaque brain during infancy undergoes regionally-heterogeneous dynamic development, leading to poor and age-variable contrasts between different anatomical structures, posing great challenges for accurate skull stripping. In this study, we propose a novel framework to effectively combine intensity information and domain-invariant prior knowledge, which are important guidance information for accurate brain extraction of developing macaques from 0 to 36 months of age. Specifically, we introduce signed distance map (SDM) and center of gravity distance map (CGDM) based on the intermediate segmentation results and fuse their information by Dual Self-Attention Module (DSAM) instead of local convolution. To evaluate the performance, we adopt two large-scale and challenging MRI datasets from rhesus macaques and cynomolgus macaques, respectively, with totally 361 scans from two different scanners with different imaging protocols. We perform cross-validation by using one dataset for training and the other one for testing. Experimental results show the robustness of our plug-and-play method on cross-source MRI datasets without any transfer learning.
AB - Non-human primates, especially macaque monkeys, with close phylogenetic relationship to humans, are highly valuable and widely used animal models for human neuroscience studies. In neuroimaging analysis of macaques, brain extraction or skull stripping of magnetic resonance imaging (MRI) is a crucial step for following processing. However, the current skull stripping methods largely focus on human brains, and thus often lead to unsatisfactory results when applying to macaque brains, especially for macaque brains during early development. In fact, the macaque brain during infancy undergoes regionally-heterogeneous dynamic development, leading to poor and age-variable contrasts between different anatomical structures, posing great challenges for accurate skull stripping. In this study, we propose a novel framework to effectively combine intensity information and domain-invariant prior knowledge, which are important guidance information for accurate brain extraction of developing macaques from 0 to 36 months of age. Specifically, we introduce signed distance map (SDM) and center of gravity distance map (CGDM) based on the intermediate segmentation results and fuse their information by Dual Self-Attention Module (DSAM) instead of local convolution. To evaluate the performance, we adopt two large-scale and challenging MRI datasets from rhesus macaques and cynomolgus macaques, respectively, with totally 361 scans from two different scanners with different imaging protocols. We perform cross-validation by using one dataset for training and the other one for testing. Experimental results show the robustness of our plug-and-play method on cross-source MRI datasets without any transfer learning.
KW - Dual self-attention
KW - Macaques skull stripping
KW - Prior knowledge
UR - http://www.scopus.com/inward/record.url?scp=85092697758&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59728-3_3
DO - 10.1007/978-3-030-59728-3_3
M3 - Conference contribution
AN - SCOPUS:85092697758
SN - 9783030597276
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 22
EP - 32
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
A2 - Martel, Anne L.
A2 - Abolmaesumi, Purang
A2 - Stoyanov, Danail
A2 - Mateus, Diana
A2 - Zuluaga, Maria A.
A2 - Zhou, S. Kevin
A2 - Racoceanu, Daniel
A2 - Joskowicz, Leo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Y2 - 4 October 2020 through 8 October 2020
ER -