Abstract
The microviscosity change associated with reticulophagy is an important component for studying endoplasmic reticulum (ER) stress disorders. Here, a BODIPY-arsenicate conjugate 1-based fluorescent molecular rotor was designed to covalently bind vicinal dithiol-containing proteins in the ER, exhibiting a bifunction of reticulophagy initiation and microviscosity evaluation. Therefore, we could quantify the local viscosity changes during reticulophagy based on the fluorescence lifetime changes of probe 1.
Original language | English |
---|---|
Pages (from-to) | 2453-2456 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 55 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2019 |
Bibliographical note
Publisher Copyright:© 2019 The Royal Society of Chemistry.
ASJC Scopus subject areas
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry