Dual learning based compression noise reduction in the texture domain

Jae Won Lee, Oh Young Lee, Jong Ok Kim

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    Compression noise reduction is similar to the super-resolution problem in terms of the restoration of lost high-frequency information. Because learning-based approaches have proven successful in the past in terms of addressing the super-resolution problem, we focus on a learning-based technique for compressed image denoising. In this process, it is important to search for the exact prior in a training set. The proposed method utilizes two different databases (i.e., a noisy and a denoised database), which work together in a complementary way. The denoised images from the dual databases are combined into a final denoised one. Additionally, the input noisy image is decomposed into structure and texture components, and only the latter is denoised because most noise tends to exist within the texture component. Experimental results show that the proposed method can reduce compression noise while reconstructing the original information that was lost in the compression process, especially for texture regions.

    Original languageEnglish
    Pages (from-to)98-107
    Number of pages10
    JournalJournal of Visual Communication and Image Representation
    Volume43
    DOIs
    Publication statusPublished - 2017 Feb 1

    Bibliographical note

    Publisher Copyright:
    © 2016 Elsevier Inc.

    Keywords

    • Compression noise
    • Dual learning
    • Learning-based denoising
    • Texture domain

    ASJC Scopus subject areas

    • Signal Processing
    • Media Technology
    • Computer Vision and Pattern Recognition
    • Electrical and Electronic Engineering

    Fingerprint

    Dive into the research topics of 'Dual learning based compression noise reduction in the texture domain'. Together they form a unique fingerprint.

    Cite this