Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers

So Yeon Chun, Gang Yeol Yoo, Seonghyun Jeong, Seung Min Park, Yun Jae Eo, Woong Kim, Young Rag Do, Jae Kyu Song

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

Optical confinement effects are investigated in InGaN/GaN axial-heterostructure nanolasers. Cylindrical nanorods with GaN/InGaN/GaN structures are prepared using combined processes of top-down and bottom-up approaches. The lasing of InGaN is observed at a low threshold (1 μJ cm-2), which is attributed to an efficient carrier transfer process from GaN to InGaN. The lasing of GaN is also found in the threshold range of 10-20 μJ cm-2 with a superlinear increase in emission intensity and high quality factors (Q = 1000), implying that dual wavelengths of lasing are tunable as a function of excitation intensity. The non-classical Fabry-Pérot modes suggest strong light-matter interactions in nanorods by optical confinement effects. The polarization of lasing indicates that the non-classical modes are in the identical transverse mode, which supports the formation of exciton-polaritons in nanorods. Polariton lasing in a single axial-heterostructure nanorod is observed for the first time, which proposes small-sized light sources with low threshold, polarized light, and tunable wavelengths in a single nanorod.

Original languageEnglish
Pages (from-to)14186-14193
Number of pages8
JournalNanoscale
Volume11
Issue number30
DOIs
Publication statusPublished - 2019 Aug 14

ASJC Scopus subject areas

  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Dual wavelength lasing of InGaN/GaN axial-heterostructure nanorod lasers'. Together they form a unique fingerprint.

Cite this