Abstract
Dust and pollution are frequently mixed together in East Asia, causing large uncertainties in assessing climate change and environmental influence and in relevant policymaking. To discern the dust effect on particle mass, we carried out long-term measurements of the mass and key chemical compositions of PM10, PM2.5, and PM1 from August 2007 to February 2012 and collected hourly data of PM10 and PM2.5 concentrations from January 2012 to October 2020 at Gosan, South Korea. The principal component analysis of measured species reveals two dominant factors, pollution and dust, accounting for 46% and 16% of the total variance, respectively. The mode distribution of PM10, PM2.5, and PM1 mass in addition to the dust events helps to provide a robust criterion of the dust impact. Dust can be identified by the mean + standard deviation (σ) of PM10, while the threshold is down to the mean concentration when dust particles experience precipitation. High PM2.5 concentration also presents dust impact; however, the criterion decreases from mean + σ in 2007–2012 to mean in 2012–2020. It indicates that dust is no longer a high-concentration event of PM2.5, but its influence gradually appears in low-concentration particles. Therefore, the dust criterion obtained from long-term PM10 concentration data is robust; however, the standard is based on PM2.5 changes over time and still needs to be determined by follow-up long-term observations.
Original language | English |
---|---|
Article number | 1419 |
Journal | Atmosphere |
Volume | 12 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2021 Nov |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- Dust criteria
- Eastern Asia
- PM
- PM
- PM
ASJC Scopus subject areas
- Environmental Science (miscellaneous)