Abstract
Spiking neural network (SNN) is considered as one of the most promising candidates for designing neuromorphic hardware due to its low power computing capability. Since SNNs are made from imitating features of the human brain, bio-plausible spike-Timing-dependent plasticity (STDP) learning rule can be adjusted to perform unsupervised learning of SNN. In this paper, we present a spike count based early termination technique for STDP learning in SNN. To reduce redundant timesteps and calculations, spike counts of output neurons can be used to terminate the training process beforehand, thus latency and energy can be decreased. The proposed scheme reduces 50.7% of timesteps and 51.1% of total weight update during training with 0.35% accuracy drop in MNIST application.
Original language | English |
---|---|
Title of host publication | Proceedings - International SoC Design Conference, ISOCC 2020 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 75-76 |
Number of pages | 2 |
ISBN (Electronic) | 9781728183312 |
DOIs | |
Publication status | Published - 2020 Oct 21 |
Event | 17th International System-on-Chip Design Conference, ISOCC 2020 - Yeosu, Korea, Republic of Duration: 2020 Oct 21 → 2020 Oct 24 |
Publication series
Name | Proceedings - International SoC Design Conference, ISOCC 2020 |
---|
Conference
Conference | 17th International System-on-Chip Design Conference, ISOCC 2020 |
---|---|
Country/Territory | Korea, Republic of |
City | Yeosu |
Period | 20/10/21 → 20/10/24 |
Bibliographical note
Funding Information:This work was supported by the Industrial Strategic Technology Development Program(10077445, Development of SoC technology based on Spiking Neural Cell for smart mobile and IoT Devices) funded By the Ministry of Trade, Industry & Energy(MOTIE, Korea)
Publisher Copyright:
© 2020 IEEE.
Keywords
- Spiking neural network(SNN)
- image classification
- spike-Timing-dependent plasticity(STDP)
ASJC Scopus subject areas
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering
- Instrumentation
- Artificial Intelligence
- Hardware and Architecture