Abstract
We have investigated the electron occupation number of the edge of a quantum Hall (QH) droplet at (Formula presented) using exact-diagonalization techniques and composite-fermion trial wave functions. We find that the electron occupation numbers near the edge obey a scaling behavior. The scaling result indicates the existence of a well-defined edge corresponding to the radius of a compact droplet of uniform filling factor 1/2. We find that the occupation number beyond this edge point is substantial, which is qualitatively different from the case of odd-denominator QH states. We relate these features to the different ways in which composite fermions occupy Landau levels for odd and even denominator states.
Original language | English |
---|---|
Pages (from-to) | R12681-R12684 |
Journal | Physical Review B - Condensed Matter and Materials Physics |
Volume | 57 |
Issue number | 20 |
DOIs | |
Publication status | Published - 1998 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics