Abstract
Recently, deep learning-based electroencephalogram (EEG) analysis and decoding have gained widespread attention to monitor a user's clinical condition or identify his/her intention/emotion. Nevertheless, the existing methods mostly model EEG signals with limited viewpoints or restricted concerns about the characteristics of the EEG signals, thus suffering from representing complex spatio-spectro-temporal patterns as well as inter-subject variability. In this work, we propose novel EEG-oriented self-supervised learning methods to discover complex and diverse patterns of spatio-spectral characteristics and spatio-temporal dynamics. Combined with the proposed self-supervised representation learning, we also devise a feature normalization strategy to resolve an inter-subject variability problem via clustering. We demonstrated the validity of the proposed framework on three publicly available datasets by comparing with state-of-the-art methods.
Original language | English |
---|---|
Title of host publication | CIKM 2022 - Proceedings of the 31st ACM International Conference on Information and Knowledge Management |
Publisher | Association for Computing Machinery |
Pages | 4143-4147 |
Number of pages | 5 |
ISBN (Electronic) | 9781450392365 |
DOIs | |
Publication status | Published - 2022 Oct 17 |
Event | 31st ACM International Conference on Information and Knowledge Management, CIKM 2022 - Atlanta, United States Duration: 2022 Oct 17 → 2022 Oct 21 |
Publication series
Name | International Conference on Information and Knowledge Management, Proceedings |
---|
Conference
Conference | 31st ACM International Conference on Information and Knowledge Management, CIKM 2022 |
---|---|
Country/Territory | United States |
City | Atlanta |
Period | 22/10/17 → 22/10/21 |
Bibliographical note
Publisher Copyright:© 2022 ACM.
Keywords
- electroencephalogram
- self-supervision
- subject-independent
ASJC Scopus subject areas
- General Business,Management and Accounting
- General Decision Sciences