Abstract
Background: Use of a baseplate with a smaller diameter in reverse shoulder arthroplasty is increasing, especially in patients with a small glenoid or glenoid wear. However, the effect of a smaller baseplate on stability of the glenoid component has not been evaluated. Thus, the purpose of this study was to determine whether a smaller baseplate (25 mm) is beneficial to the initial stability of the glenoid component compared to that with a baseplate of a commonly used size (29 mm). Methods: Micromotion of glenoid components attached to 14 scapulae of fresh-frozen cadavers was measured and compared between 25- And 29-mm baseplates in biomechanical testing. Impingement-free range of motion in abduction, adduction, internal rotation, and external rotation was evaluated by using a simulated computer model constructed based on the same fresh-frozen cadavers used in biomechanical testing. Results: Micromotion at the inferior third of the glenoid-glenosphere interface was higher in the 29-mm baseplate group than in the 25-mm baseplate group during both 0.7- And 1-body weight cyclic loading in biomechanical testing. Adduction deficit was smaller, and total impingement-free range of motion from abduction to adduction and rotation were greater in the 25-mm baseplate group than in the 29-mm baseplate group in the simulated computer model. Conclusions: Use of a baseplate with a smaller diameter (25 mm) in reverse shoulder arthroplasty is suitable for improving the primary stability of the glenoid component. With a smaller baseplate, impingement-free range of motion is optimized in a smaller glenoid.
Original language | English |
---|---|
Article number | 417 |
Journal | BMC Musculoskeletal Disorders |
Volume | 15 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2014 |
Bibliographical note
Publisher Copyright:© 2014 Chae et al.
Keywords
- Biomechanical testing
- Reverse shoulder arthroplasty
- Simulated computer model
- Smaller baseplate
ASJC Scopus subject areas
- Rheumatology
- Orthopedics and Sports Medicine