Effect of molecular weight between crosslinks on the fracture behavior of rubber-toughened epoxy adhesives

Byoung Un Kang, Jae Young Jho, Junkyung Kim, Sang Soo Lee, Min Park, Soonho Lim, Chul Rim Choe

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

The effect of molecular weight between crosslinks, Mc, on the fracture behavior of rubber-toughened epoxy adhesives was investigated and compared with the behavior of the bulk resins. In the liquid rubber-toughened bulk system, fracture energy increased with increasing Mc. However, in the liquid rubber-toughened adhesive system, with increasing Mc, the locus of joint fracture had a transition from cohesive failure, break in the bond layer, to interfacial failure, rupture of the bond layer from the surface of the substrate. Specimens fractured by cohesive failure exhibited larger fracture energies than those by interfacial failure. The occurrence of transition from cohesive to interfacial failure seemed to be caused by the increase in the ductility of matrix, the mismatch of elastic constant, and the agglomeration of rubber particles at the metal/epoxy interface. When core-shell rubber, which did not agglomerate at the interface, was used as a toughening agent, fracture energy increased with Mc.

Original languageEnglish
Pages (from-to)38-48
Number of pages11
JournalJournal of Applied Polymer Science
Volume79
Issue number1
DOIs
Publication statusPublished - 2001 Jan

ASJC Scopus subject areas

  • Chemistry(all)
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effect of molecular weight between crosslinks on the fracture behavior of rubber-toughened epoxy adhesives'. Together they form a unique fingerprint.

Cite this