Effect of passive porous surface on the trailing-edge noise

Youngmin Bae, Young J. Moon

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

This study numerically investigates the effect of porous surfaces on the turbulent noise generated by a blunt trailing-edge of a flat plate. The three-dimensional turbulent flow over the flat plate (Rec = 1.3 × 105 and M = 0.06) is computed by incompressible large eddy simulation (LES) based on the volume-averaged Navier-Stokes equations, while the acoustic field is calculated by the linearized perturbed compressible equations (LPCEs) coupled with LES. The porous surface is applied to a small, selected area near the trailing-edge where vortex shedding and edge-scattering of convecting eddies generate dipole noise. The computed results show that the trailing-edge with porosity ε=0.25 and permeability (normalized) K* = 0.01 yields a reduction of the tonal peak by 13 dB for the zero angle of attack (α = °) case, via breaking not only in the streamwise direction but also in the spanwise direction, the spatial correlation of the wall pressure fluctuations near the trailing-edge. For the separated flow case (α = 5°), the porous surface is found to weaken the pressure fluctuations at the trailing-edge and results in 3 ~ 10 dB noise reduction over a wide range of frequency, via interrupting the edge-scattering and reducing the separated flow region over the upper surface of the plate.

Original languageEnglish
Article number126101
JournalPhysics of Fluids
Volume23
Issue number12
DOIs
Publication statusPublished - 2011 Dec 14

ASJC Scopus subject areas

  • Computational Mechanics
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Effect of passive porous surface on the trailing-edge noise'. Together they form a unique fingerprint.

Cite this