Effects of blade-end open ratio on aerodynamic performance of multi-blade fan

Ho Ho Lee, Hang Cheol Choi, Jae Gu Jung, Yoon Pyo Lee, Youhwan Shin, Jin Taek Chung

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

    Abstract

    This paper is studied to the performance characteristics and the flow behavior of multi-blade fan according to blade-end open-ratio (k) of near the shroud side. Firstly, the properties related to performance of the fan have been measured in a test rig. In the next, numerical calculations are conducted to explain the complex, three-dimensional flow behavior and performance of the fan using CFX 12.0 commercial code. The validation of numerical results has been performed in comparison with the experimental results. The numerical results provide a comprehensive understanding of the flow behavior inside the fan. By changing the open ratio of blade-end near the shroud side, the flow behavior and inactive zone is respectively different. The separated flows are strongly occurred in a blade passage and the inactive zones are formed near the shroud as k = 0 and 20% cases, relatively. The flow separation and inactive zone reduce fan's efficiency because they cause internal loss. The best efficiency and flow behavior of the fan is appeared to be at k = 70% case. According to open ratio of blade-end near shroud side, the flow behavior can be changed and the efficiency of a fan can be increasing. The objective of this study is to understand of the complex flow behavior inside the fan and offer guidance for fan designing.

    Original languageEnglish
    Title of host publicationASME 2012 Fluids Engineering Division Summer Meeting Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 10th Int. Conf. on Nanochannels, Microchannels, and M, FEDSM 2012
    Pages497-504
    Number of pages8
    EditionPARTS A AND B
    DOIs
    Publication statusPublished - 2012
    EventASME 2012 Fluids Engineering Division Summer Meeting, FEDSM 2012 Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and M, FEDSM 2012 - Rio Grande, Puerto Rico
    Duration: 2012 Jul 82012 Jul 12

    Publication series

    NameAmerican Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
    NumberPARTS A AND B
    Volume1
    ISSN (Print)0888-8116

    Other

    OtherASME 2012 Fluids Engineering Division Summer Meeting, FEDSM 2012 Collocated with the ASME 2012 Heat Transfer Summer Conf. and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and M, FEDSM 2012
    Country/TerritoryPuerto Rico
    CityRio Grande
    Period12/7/812/7/12

    ASJC Scopus subject areas

    • Mechanical Engineering

    Fingerprint

    Dive into the research topics of 'Effects of blade-end open ratio on aerodynamic performance of multi-blade fan'. Together they form a unique fingerprint.

    Cite this