Effects of geometrically extended contact area on electrical properties in amorphous InGaZnO thin film transistors

Jae Sung Kim, Min Kyu Joo, Ming Xing Piao, Seung Eon Ahn, Yong Hee Choi, Junhong Na, Minju Shin, Man Joong Han, Ho Kyun Jang, Gyu Tae Kim

    Research output: Contribution to journalArticlepeer-review

    2 Citations (Scopus)

    Abstract

    To elucidate the effect of the contact geometry on the device performances, the amorphous InGaZnO field effect transistors with different contact areas were fabricated and compared by the transmission line method. Extended contact-area devices were found to have better electrical performances in field effect mobility and subthreshold swing than those of bar-shaped reference devices. These improvements in the device characteristics resulted from a significantly reduced contact resistance (Rc). From the comparison of specific contact resistivity and transfer length (LT), the relationship between Rc and contact area including the contact width and the LT was established and demonstrated that Rc is controllable by optimizing the contact area geometry.

    Original languageEnglish
    Pages (from-to)279-282
    Number of pages4
    JournalThin Solid Films
    Volume558
    DOIs
    Publication statusPublished - 2014 May 2

    Bibliographical note

    Funding Information:
    This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Converging Research Center Program, 2013K000175 and Global Frontier Research Program, No. 2011-0031638 ).

    Keywords

    • Amorphous oxide
    • Contact area
    • Contact resistance
    • InGaZnO
    • Specific contact resistivity
    • Thin film transistor
    • Transfer length
    • Transmission line method

    ASJC Scopus subject areas

    • Electronic, Optical and Magnetic Materials
    • Surfaces and Interfaces
    • Surfaces, Coatings and Films
    • Metals and Alloys
    • Materials Chemistry

    Fingerprint

    Dive into the research topics of 'Effects of geometrically extended contact area on electrical properties in amorphous InGaZnO thin film transistors'. Together they form a unique fingerprint.

    Cite this