Abstract
To elucidate the effect of the contact geometry on the device performances, the amorphous InGaZnO field effect transistors with different contact areas were fabricated and compared by the transmission line method. Extended contact-area devices were found to have better electrical performances in field effect mobility and subthreshold swing than those of bar-shaped reference devices. These improvements in the device characteristics resulted from a significantly reduced contact resistance (Rc). From the comparison of specific contact resistivity and transfer length (LT), the relationship between Rc and contact area including the contact width and the LT was established and demonstrated that Rc is controllable by optimizing the contact area geometry.
Original language | English |
---|---|
Pages (from-to) | 279-282 |
Number of pages | 4 |
Journal | Thin Solid Films |
Volume | 558 |
DOIs | |
Publication status | Published - 2014 May 2 |
Bibliographical note
Funding Information:This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Converging Research Center Program, 2013K000175 and Global Frontier Research Program, No. 2011-0031638 ).
Keywords
- Amorphous oxide
- Contact area
- Contact resistance
- InGaZnO
- Specific contact resistivity
- Thin film transistor
- Transfer length
- Transmission line method
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Surfaces and Interfaces
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry