Effects of paramagnetic fluctuations on the thermochemistry of MnO(100) surfaces in the oxygen evolution reaction

Sangmoon Yoon, Kyoungsuk Jin, Sangmin Lee, Ki Tae Nam, Miyoung Kim, Young Kyun Kwon

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

We investigated the effects of paramagnetic (PM) fluctuations on the thermochemistry of the MnO(100) surface in the oxygen evolution reaction (OER) using the "noncollinear magnetic sampling method plus U"(NCMSM+U). Various physical properties, such as the electronic structure, free energy, and charge occupation, of the MnO(100) surface in the PM state with several OER intermediates, were reckoned and compared to those in the antiferromagnetic (AFM) state. We found that PM fluctuation enhances charge transfer from a surface Mn ion to each of the intermediates and strengthens the chemical bond between them, while not altering the overall features, such as the rate determining step and resting state, in reaction pathways. The enhanced charge transfer can be attributed to the delocalized nature of valence bands observed in the PM surface. In addition, it was observed that chemical-bond enhancement depends on the intermediates, resulting in significant deviations in reaction energy barriers. Our study suggests that PM fluctuations play a significant role in the thermochemistry of chemical reactions occurring on correlated oxide surfaces.

Original languageEnglish
Pages (from-to)859-865
Number of pages7
JournalPhysical Chemistry Chemical Physics
Volume23
Issue number2
DOIs
Publication statusPublished - 2021 Jan 14
Externally publishedYes

Bibliographical note

Publisher Copyright:
© the Owner Societies.

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Effects of paramagnetic fluctuations on the thermochemistry of MnO(100) surfaces in the oxygen evolution reaction'. Together they form a unique fingerprint.

Cite this