Effects of Particle Diameter and Coke Layer Thickness on Solid Flow and Stress Distribution in BF by 3D Discrete Element Method

Dereje Degefa Geleta, Joonho Lee

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

In order to reduce ironmaking-related CO2 emissions, hydrogen-enriched blast furnace (BF) operation is currently under development. In hydrogen-enriched BF operation, coke layer thickness can be decreased to reduce CO2 emissions. However, BFs operating with thin coke layers may experience instability or discontinuous phenomena such as particle slip and gas channeling problems, so it is important to optimize the particle diameter and coke layer thickness for optimal BF operation. In this study, the effects of particle diameter and coke layer thickness on the solid flow and stress distribution in a BF were analyzed using a three-dimensional discrete element method. Furthermore, the effects of particle diameter and coke layer thickness on the burden layer stabilities, particle velocities, and particle stress distributions have been investigated. The results show that decreasing the coke layer thickness caused instability owing to the mixing of the coke and ore layers in the BF-cohesive zone and slight increases in both the average particle velocities and the average normal particle stress magnitudes. In addition, the average particle velocities and average normal particle stresses were higher for the smaller particles than for the larger ones during the simulations.

Original languageEnglish
Pages (from-to)3594-3602
Number of pages9
JournalMetallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science
Volume49
Issue number6
DOIs
Publication statusPublished - 2018 Dec 1

Bibliographical note

Funding Information:
This study was supported by the Industrial Strategic Technology Development Program (20172010106300, Development of Hybrid ironmaking processes for lower CO2 emissions) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). The authors are grateful to Assistant Professor Shungo Natsui at Hokkaido University for his informative discussion.

Publisher Copyright:
© 2018, The Minerals, Metals & Materials Society and ASM International.

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Effects of Particle Diameter and Coke Layer Thickness on Solid Flow and Stress Distribution in BF by 3D Discrete Element Method'. Together they form a unique fingerprint.

Cite this