TY - JOUR
T1 - Effects of salinity on physicochemical properties of Alaska pollock surimi after repeated freeze-thaw cycles
AU - Kang, E. J.
AU - Hunt, A. L.
AU - Park, J. W.
PY - 2008/6
Y1 - 2008/6
N2 - The effects of residual salt in surimi on physicochemical properties as affected by various freeze and thaw (FT) cycles were examined. Fresh Alaska pollock surimi was mixed with 4.0% sugar and 5.0% sorbitol, along with 8 combinations of salt (0.4%, 0.6%, 0.8%, and 1.0% NaCl) and sodium polyphosphate (0.25% and 0.5%), vacuum-packed, and stored at -18°C until used. FT cycles (0, 6, and 9) were used to mimic long-term frozen storage. At the time of gel preparation, each treatment was appropriately adjusted to maintain 2% salt and 78% moisture. The pH decreased as residual salt increased during frozen storage. Salt extractable protein (SEP) decreased (P < 0.05) as FT cycles extended from 0 to 9. Regardless of residual salt and phosphate concentration during frozen storage, whiteness value (L* - 3b*) decreased (P < 0.05) as FT cycles extended, except for samples with 0.4% salt/0.5% phosphate and 0.6% salt/0.25% phosphate. Water retention ability (WRA) and texture significantly (P < 0.05) decreased at higher salt content (0.8% and 1.0%) after 9 FT cycles, indicating higher residual salt concentration can shorten the shelf life of frozen surimi. Our study revealed lower residual salt concentration and higher phosphate concentration are likely to extend the shelf life of frozen surimi.
AB - The effects of residual salt in surimi on physicochemical properties as affected by various freeze and thaw (FT) cycles were examined. Fresh Alaska pollock surimi was mixed with 4.0% sugar and 5.0% sorbitol, along with 8 combinations of salt (0.4%, 0.6%, 0.8%, and 1.0% NaCl) and sodium polyphosphate (0.25% and 0.5%), vacuum-packed, and stored at -18°C until used. FT cycles (0, 6, and 9) were used to mimic long-term frozen storage. At the time of gel preparation, each treatment was appropriately adjusted to maintain 2% salt and 78% moisture. The pH decreased as residual salt increased during frozen storage. Salt extractable protein (SEP) decreased (P < 0.05) as FT cycles extended from 0 to 9. Regardless of residual salt and phosphate concentration during frozen storage, whiteness value (L* - 3b*) decreased (P < 0.05) as FT cycles extended, except for samples with 0.4% salt/0.5% phosphate and 0.6% salt/0.25% phosphate. Water retention ability (WRA) and texture significantly (P < 0.05) decreased at higher salt content (0.8% and 1.0%) after 9 FT cycles, indicating higher residual salt concentration can shorten the shelf life of frozen surimi. Our study revealed lower residual salt concentration and higher phosphate concentration are likely to extend the shelf life of frozen surimi.
KW - Alaska pollock surimi
KW - Freeze-thaw cycles
KW - Frozen storage
KW - Phosphate
KW - Salinity
UR - http://www.scopus.com/inward/record.url?scp=44949220284&partnerID=8YFLogxK
U2 - 10.1111/j.1750-3841.2008.00753.x
DO - 10.1111/j.1750-3841.2008.00753.x
M3 - Article
C2 - 18576979
AN - SCOPUS:44949220284
SN - 0022-1147
VL - 73
SP - C347-C355
JO - Journal of Food Science
JF - Journal of Food Science
IS - 5
ER -