TY - JOUR
T1 - Effects of the covid-19 pandemic on classrooms
T2 - A case study on foreigners in south korea using applied machine learning
AU - Aiyanyo, Imatitikua D.
AU - Samuel, Hamman
AU - Lim, Heuiseok
N1 - Funding Information:
Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-0-01405) supervised by the IITP (Institute for Information and Communications Technology Planning and Evaluation). Additionally, it was also supported by Institute for Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00368, A Neural-Symbolic Model for Knowledge Acquisition and Inference Techniques.
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/5/1
Y1 - 2021/5/1
N2 - In this study, we qualitatively and quantitatively examine the effects of COVID-19 on classrooms, students, and educators. Using a new Twitter dataset specific to South Korea during the pandemic, we sample the sentiment and strain on students and educators using applied machine learning techniques in order to identify various topical pain points emerging during the pandemic. Our contributions include a novel and open source geo-fenced dataset on student and educator opinion within South Korea that we are making available to other researchers as well. We also identify trends in sentiment and polarity over the pandemic timeline, as well as key drivers behind the sentiments. Moreover, we provide a comparative analysis of two widely used pre-trained sentiment analysis approaches with TextBlob and VADER using statistical significance tests. Ultimately, we analyze how public opinion shifted on the pandemic in terms of positive sentiments about accessing course materials, online support communities, access to classes, and creativity, to negative sentiments about mental fatigue, job loss, student concerns, and overwhelmed institutions. We also initiate initial discussions about the concept of actionable sentiment analysis by overlapping polarity with the concept of trigger management to assist users in coping with negative emotions. We hope that insights from this preliminary study can promote further utilization of social media datasets to evaluate government messaging, population sentiment, and multi-dimensional analysis of pandemics.
AB - In this study, we qualitatively and quantitatively examine the effects of COVID-19 on classrooms, students, and educators. Using a new Twitter dataset specific to South Korea during the pandemic, we sample the sentiment and strain on students and educators using applied machine learning techniques in order to identify various topical pain points emerging during the pandemic. Our contributions include a novel and open source geo-fenced dataset on student and educator opinion within South Korea that we are making available to other researchers as well. We also identify trends in sentiment and polarity over the pandemic timeline, as well as key drivers behind the sentiments. Moreover, we provide a comparative analysis of two widely used pre-trained sentiment analysis approaches with TextBlob and VADER using statistical significance tests. Ultimately, we analyze how public opinion shifted on the pandemic in terms of positive sentiments about accessing course materials, online support communities, access to classes, and creativity, to negative sentiments about mental fatigue, job loss, student concerns, and overwhelmed institutions. We also initiate initial discussions about the concept of actionable sentiment analysis by overlapping polarity with the concept of trigger management to assist users in coping with negative emotions. We hope that insights from this preliminary study can promote further utilization of social media datasets to evaluate government messaging, population sentiment, and multi-dimensional analysis of pandemics.
KW - COVID-19
KW - Educators
KW - Machine learning
KW - Sentiment analysis
KW - Students
UR - http://www.scopus.com/inward/record.url?scp=85105802288&partnerID=8YFLogxK
U2 - 10.3390/su13094986
DO - 10.3390/su13094986
M3 - Article
AN - SCOPUS:85105802288
SN - 2071-1050
VL - 13
JO - Sustainability
JF - Sustainability
IS - 9
M1 - 4986
ER -