Abstract
A low-band-gap alternating copolymer, poly{5,6-bis(octyloxy)-4-(thiophen-2- yl)benzo[c]-1,2,5-thiadiazole} (PTBT), was synthesized and investigated for photovoltaic applications. PTBT showed a minimized torsion angle in its main backbone owing to the introduction of solubilizing octyloxy groups on the electron-poor benzothiadiazole unit, thereby resulting in pronounced intermolecular ordering and a deep level of the HOMO (-5.41 eV). By blending PTBT with [6,6]phenyl-C61-butyric acid methyl ester (PC 61BM), highly promising performance was achieved with power-conversion efficiencies (PCEs) of 5.9 and 5.3% for the conventional and inverted devices, respectively, under air mass 1.5 global (AM 1.5G, 100 mWcm -2) illumination. The open-circuit voltage (V OC≈0.85-0.87 V) is one of the highest values reported thus far for thiophene-based polymers (e.g., poly(3-hexylthiophene) V OC≈0.6 V). The inverted device also achieved a remarkable PCE compared to other devices based on low-band-gap polymers. Ideal film morphology with bicontinuous percolation pathways was expected from the atomic force microscopy (AFM) images, space-charge-limited current (SCLC) mobility, and selected-area electron-diffraction (SAED) measurements. This molecular design strategy is useful for achieving simple, processable, and planar donor-acceptor (D-A)-type low-band-gap polymers with a deep HOMO for applications in photovoltaic cells. A hard cell: A planar low-band-gap copolymer (PTBT) with high intermolecular ordering and a deep HOMO level was synthesized for use in photovoltaic cells. PTBT contained alternating thiophene and alkoxy-substituted benzothiadiazole groups. Both conventional- and inverted-type photovoltaic devices showed promising power-conversion efficiencies (5.9 and 5.3%, respectively).
Original language | English |
---|---|
Pages (from-to) | 2551-2558 |
Number of pages | 8 |
Journal | Chemistry - A European Journal |
Volume | 18 |
Issue number | 9 |
DOIs | |
Publication status | Published - 2012 Feb 27 |
Externally published | Yes |
Keywords
- charge transfer
- copolymerization
- pi interactions
- polymers
- solar cells
ASJC Scopus subject areas
- Catalysis
- Organic Chemistry