Efficient intracellular delivery of biomacromolecules employing clusters of zinc oxide nanowires

Prashant Sharma, Hyun Ah Cho, Jae Won Lee, Woo Seung Ham, Bum Chul Park, Nam Hyuk Cho, Young Keun Kim

Research output: Contribution to journalArticlepeer-review

24 Citations (Scopus)


Zinc oxide (ZnO) nanocomposites have been widely applied in biomedical fields due to their multifunctionality and biocompatibility. However, the physicochemical properties of ZnO nanocomposite involved in nano-bio interactions are poorly defined. To assess the potential applicability of ZnO nanowires for intracellular delivery of biomolecules, we examined the dynamics of cellular activity of cells growing on densely packed ZnO nanowire arrays with two different physical conformations, vertical (VNW) or fan-shaped (FNW) nanowires. Although a fraction of human embryonic kidney cells cultured on VNW or FNW underwent rapid apoptosis, peaking at 6 h after incubation, cells could survive and replicate without significant apoptosis on the foreign substrate after 12 h of lag phase. In addition, the cells formed lamellipodia to wrap FNW, and efficiently took up peptides non-covalently coated on VNW and FNW within 30 min of incubation. Moreover, FNW could mediate intracellular delivery of associated DNAs and their gene expression, suggesting that ZnO nanowires transiently penetrate membranes to mediate intranuclear delivery of exogenous DNA. These results indicate that ZnO nanowire arrays can serve as nanocomposites for manipulating nano-bio interfaces if appropriately modified in a 3-dimensional conformation.

Original languageEnglish
Pages (from-to)15371-15378
Number of pages8
Issue number40
Publication statusPublished - 2017 Oct 28

Bibliographical note

Funding Information:
This research was supported by the Nano-Material Technology Development Program through the National Research Foundation of Korea (2014 M3A7B4052192, 2015R1A2A1A-15053002) and by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI14C0365). P. S. and J. W. L received a scholarship from the BK21-plus education program provided by the National Research Foundation of Korea.

Publisher Copyright:
© 2017 The Royal Society of Chemistry.

ASJC Scopus subject areas

  • General Materials Science


Dive into the research topics of 'Efficient intracellular delivery of biomacromolecules employing clusters of zinc oxide nanowires'. Together they form a unique fingerprint.

Cite this