Electrical characteristics of rf-magnetron sputtered BaTa2O6 thin film

Y. S. Kim, Y. H. Lee, M. Y. Sung

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)


The characteristics of radio-frequency magnetron sputtered BaTa2O6 thin films with aluminum (Al) top and indium tin oxide (ITO) bottom electrodes have been investigated as a function of applied field and temperature. The optical transmittance in the visible range was in range of 80-90% regardless of the substrate temperature. The dielectric constant increased from 20 to 30 with increasing the substrate temperature and nearly independent of the frequency in the range of 0.3-100 kHz but the loss factors increased with increasing the substrate temperature at high frequency. The leakage currents of BaTa2O6 thin film are in the order of 10-6-10-7 A/cm2 at the applied field of 1 MV/cm and the charge storage capacitance (εEbreakdown) are 5.64 (100°C), 10.6 (200°C) and 11.8 (300°C) μC/cm2. From the deposition temperature, voltage polarity and thickness dependence of leakage current, we can conclude that the dominant conduction mechanism is ascribed to Schottky emission at high electric field (> 1 MV/cm) and hopping conduction at low electric field (< 1 MV/cm). The Schottky barrier heights measured are 1.14 eV at Al(+) and 0.8 eV at Al(-).

Original languageEnglish
Pages (from-to)1189-1193
Number of pages5
JournalSolid-State Electronics
Issue number7
Publication statusPublished - 1999 Jul

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering


Dive into the research topics of 'Electrical characteristics of rf-magnetron sputtered BaTa2O6 thin film'. Together they form a unique fingerprint.

Cite this