Abstract
The realization of lasers as small as possible has been one of the long-standing goals of the laser physics and quantum optics communities. Among multitudes of recent small cavities, the one-dimensional nanobeam cavity has been actively investigated as one of the most attractive candidates for effective photon confinement thanks to its simple geometry. However, the current injection into the ultra-small nano-resonator without critically degrading the quality factor remains still unanswered. Here we report an electrically driven, one-dimensional, photonic-well, single-mode, room-temperature nanobeam laser whose footprint approaches the smallest possible value. The small physical volume of ∼4.6 × 0.61 × 0.28 μm 3 (∼8.2(λ n -1)3) was realized through the introduction of a Gaussian-like photonic well made of only 11 air holes. In addition, a low threshold current of ∼5 μA was observed from a three-cell nanobeam cavity at room temperature. The simple one-dimensional waveguide nature of the nanobeam enables straightforward integration with other photonic applications such as photonic integrated circuits and quantum information devices.copyright
Original language | English |
---|---|
Article number | 2822 |
Journal | Nature communications |
Volume | 4 |
DOIs | |
Publication status | Published - 2013 |
ASJC Scopus subject areas
- Chemistry(all)
- Biochemistry, Genetics and Molecular Biology(all)
- Physics and Astronomy(all)