Abstract
The effects of organic solvent on the electronic, structural and chemical properties of tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT-OTs) are investigated. The use of different organic solvents during the oxidative chemical polymerization of 3,4-ethylenedioxythiophene (EDOT) with iron(III)-tosylate can greatly vary the electrical conductivity of PEDOT-OTs along with molecular structure and doping concentration. For example, PEDOT-OTs prepared from methanol shows the conductivity of 20.1 S/cm, which is an increase by a factor of 107 compared to PEDOT-OTs prepared from acetone. From the X-ray diffraction (XRD) experiments, it was found that PEDOT-OTs samples prepared from ketone solvents are amorphous state, whereas PEDOT-OTs samples prepared from alcoholic solvents show the better defined crystalline structure in which the charge transport along and between the PEDOT chains are promoted. Chemical analysis employing X-ray photoelectron spectroscopy (XPS) revealed that the doping concentration of PEDOT-OTs with alcoholic solvents is much higher than that of PEDOT-OTs with ketones. It is proposed that the interactions between the organic solvent and iron(III)-tosylate can cause the variation in doping concentration and, therefore, result in the PEDOT-OTs of different conductivities and chain structures.
Original language | English |
---|---|
Pages (from-to) | 169-174 |
Number of pages | 6 |
Journal | Synthetic Metals |
Volume | 149 |
Issue number | 2-3 |
DOIs | |
Publication status | Published - 2005 Mar 31 |
Keywords
- Doping concentration
- Electrical conductivity
- Organic solvent
- Poly(3,4-ethylenedioxythiophene)
- Tosylate (p-toluene sulfonate)
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering
- Metals and Alloys
- Materials Chemistry