Embryonic exposure to chloroxylenol induces developmental defects and cardiovascular toxicity via oxidative stress, inflammation, and apoptosis in zebrafish

Garam An, Miji Kim, Junho Park, Hahyun Park, Taeyeon Hong, Whasun Lim, Gwonhwa Song

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)

    Abstract

    Chloroxylenol is an extensively consumed anti-microbial compound. Since its usage is on the rise due to the coronavirus pandemic and ban on other antimicrobial ingredients, recent studies have suggested the necessity of estimating its potential for ecotoxicity. The detrimental effect of chloroxylenol on zebrafish (Danio rerio) viability has been reported; however, research on the mechanisms underlying its toxicity is quite limited. Therefore, we applied the zebrafish model for elucidating responses against chloroxylenol to predict its toxicity toward human health and ecology. Zebrafish exposed to chloroxylenol (0, 0.5, 1, 2.5, 5, and 10 mg/L) at the embryonic stage (from 6 h post-fertilization (hpf) to 96 hpf) showed impaired viability and hatchability, and pathological phenotypes. To address these abnormalities, cellular responses such as oxidative stress, inflammation, and apoptosis were confirmed via in vivo imaging of a fluorescent dye or measurement of the transcriptional changes related to each response. In particular, developmental defects in the cardiovascular system of zebrafish exposed to 0, 0.5, 1, and 2.5 mg/L of chloroxylenol from 6 to 96 hpf were identified by structural analyses of the system in the flk1:eGFP transgenic line. Additional experiments were conducted using human umbilical vein endothelial cells (HUVECs) to predict the adverse impacts of chloroxylenol on the human vascular system. Chloroxylenol impairs the viability and tube formation ability of HUVECs by modulating ERK signaling. The findings obtained using the zebrafish model provide evidence of the possible risks of chloroxylenol exposure and suggest the importance of more in-depth ecotoxicological studies.

    Original languageEnglish
    Article number109617
    JournalComparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology
    Volume268
    DOIs
    Publication statusPublished - 2023 Jun

    Bibliographical note

    Funding Information:
    This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government ( MSIT ) (grant number: 2021R1A2C2005841 & 2021R1C1C1009807 ). This research was also supported by the Health Fellowship Foundation . And this research was supported by Basic Science Research Program through the NRF funded by the Ministry of Education (grant number: NRF-2019R1A6A1A10073079 ).

    Publisher Copyright:
    © 2023

    Keywords

    • Cardiovascular toxicity
    • Chloroxylenol
    • Developmental toxicity
    • Oxidative stress
    • Zebrafish

    ASJC Scopus subject areas

    • Biochemistry
    • Physiology
    • Aquatic Science
    • Animal Science and Zoology
    • Toxicology
    • Cell Biology
    • Health, Toxicology and Mutagenesis

    Fingerprint

    Dive into the research topics of 'Embryonic exposure to chloroxylenol induces developmental defects and cardiovascular toxicity via oxidative stress, inflammation, and apoptosis in zebrafish'. Together they form a unique fingerprint.

    Cite this