Abstract
Global climate change influences the emergence, spread, and severity of rust diseases that affect crops and forests. In Korea, the rust diseases that affect Wisteria floribunda and its alternate host Corydalis incisa are rapidly spreading northwards. Through morphological, molecular, phylogenetic, and pathogenicity approaches, Neophysopella kraunhiae was identified as the causal agent, alternating between the two host plants to complete its life cycle. Using the maximum entropy model (Maxent) under shared socioeconomic pathways (SSPs), the results of this study suggest that by the 2050s, C. incisa is likely to extend its range into central Korea owing to climate shifts, whereas the distribution of W. floribunda is expected to remain unchanged nationwide. The generalized additive model revealed a significant positive correlation between the presence of C. incisa and the incidence of rust disease, highlighting the role that climate-driven expansion of this alternate host plays in the spread of N. kraunhiae. These findings highlight the profound influence of climate change on both the distribution of a specific plant and the disease a rust fungus causes, raising concerns about the potential emergence and spread of other rust pathogens with similar host dynamics.
Original language | English |
---|---|
Pages (from-to) | 160-171 |
Number of pages | 12 |
Journal | Mycobiology |
Volume | 52 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the Korean Society of Mycology.
Keywords
- Ochropsora kraunhiae
- alternate host
- climate change
- predictive model
- wisteria rust
ASJC Scopus subject areas
- Microbiology
- Infectious Diseases