Energy performance and thermal comfort of integrated energy recovery ventilator system with air-conditioner for passive buildings

Wonhee Cho, Juneyeong Heo, Myeong Hyeon Park, Hyeong Joon Seo, Kisup Lee, Dong Gyu Lee, Yongchan Kim

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

This study aims to provide a ventilation solution for energy-efficient buildings that suffer from high indoor moisture content during cooling seasons. With the decreased sensible load in highly insulated buildings, conventional energy recovery ventilators (ERVs) and air conditioners are inadequate to effectively handle the increased dehumidification load. Moisture removal through air conditioners requires cooling the air below its dew point, which makes precise control of indoor humidity difficult and reduces the level of indoor thermal comfort. Thus, an ERV system integrated with a cooling coil (ERV-CC) is proposed to enhance its latent heat effectiveness. Field measurements were conducted for the ERV and ERV-CC systems to compare their energy performances and levels of indoor thermal comfort. The results indicated that the ERV system did not satisfy the recommended range of indoor humidity even when the set-point temperature of the air conditioner decreased. However, the ERV-CC system could condition the indoor air within the comfort zone at higher energy efficiencies. In addition, the ERV-CC system was observed to benefit from the dehumidification effect through the enthalpy recovery process under a wider range of outdoor conditions. Especially, at low outdoor temperatures, the ERV-CC system dehumidified the incoming fresh air, whereas the ERV system humidified the fresh air. Overall, the optimum operating conditions for the ERV-CC system were determined to be a set-point temperature and relative humidity of 27 °C and 50%, respectively, while satisfying the thermal comfort criterion at an 8.24% predicted percentage dissatisfied index with minimum energy consumption. Furthermore, the ERV-CC system not only reduced the building load, but also improved the individual air conditioner performance.

Original languageEnglish
Article number113302
JournalEnergy and Buildings
Volume295
DOIs
Publication statusPublished - 2023 Sept 15

Bibliographical note

Funding Information:
This work was jointly supported by Samsung Electronics Inc. (No. Q2206581), and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A5A1018153).

Publisher Copyright:
© 2023 Elsevier B.V.

Keywords

  • Air conditioner
  • Dehumidification
  • Energy efficiency
  • Energy recovery ventilator
  • Thermal comfort

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Building and Construction
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Energy performance and thermal comfort of integrated energy recovery ventilator system with air-conditioner for passive buildings'. Together they form a unique fingerprint.

Cite this