Engineered protein nanoparticles for invivo tumor detection

Keum Young Ahn, Ho Kyung Ko, Bo Ram Lee, Eun Jung Lee, Jong Hwan Lee, Youngro Byun, Ick Chan Kwon, Kwangmeyung Kim, Jeewon Lee

    Research output: Contribution to journalArticlepeer-review

    29 Citations (Scopus)

    Abstract

    Two different protein nanoparticles that are totally different in shape and surface structure, i.e. Escherichia coli DNA-binding protein (eDPS) (spherical, 10nm) and Thermoplasma acidophilum proteasome (tPTS) (cylindrical, 12×15nm) were engineered for invivo optical tumor detection: arginine-glycine-aspartic acid (RGD) peptide (CDCRGDCFC) was genetically inserted to the surface of each protein nanoparticle, and also near-infrared fluorescence dye was chemically linked to the surface lysine residues. The specific affinity of RGD for integrin (αvβ3) facilitated the uptake of RGD-presenting protein nanoparticles by integrin-expressing tumor cells, and also the protein nanoparticles neither adversely affected cell viability nor induced cell damage. After intravenously injected to tumor-bearing mice, all the protein nanoparticles successfully reached tumor with negligible renal clearance, and then the surface RGD peptides caused more prolonged retention of protein nanoparticles in tumor and accordingly higher fluorescence intensity of tumor image. In particular, the fluorescence of tumor image was more intensive with tPTS than eDPS, which is due presumably to longer invivo half-life and circulation of tPTS that originates from thermophilic and acidophilic bacterium. Although eDPS and tPTS were used as proof-of-concept in this study, it seems that other protein nanoparticles with different size, shape, and surface structure can be applied to effective invivo tumor detection.

    Original languageEnglish
    Pages (from-to)6422-6429
    Number of pages8
    JournalBiomaterials
    Volume35
    Issue number24
    DOIs
    Publication statusPublished - 2014 Aug

    Bibliographical note

    Funding Information:
    This study was supported by the 2012 NLRL (National Leading Research Lab.) Project (grant no. 2012R1A2A1A01008085 ) (the main project that supported this work) and the Basic Science Research Program (ERC program, grant no. 2010-0029409 ) of the National Research Foundation of Korea (NRF) .

    Keywords

    • Optical imaging
    • Protein nanoparticles
    • Surface engineering
    • Tumor detection

    ASJC Scopus subject areas

    • Bioengineering
    • Ceramics and Composites
    • Biophysics
    • Biomaterials
    • Mechanics of Materials

    Fingerprint

    Dive into the research topics of 'Engineered protein nanoparticles for invivo tumor detection'. Together they form a unique fingerprint.

    Cite this