Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration

Jun Young Choi, Keun Heo, Kyung Sang Cho, Sung Woo Hwang, Sangsig Kim, Sang Yeol Lee

Research output: Contribution to journalArticlepeer-review

46 Citations (Scopus)

Abstract

We investigated the band gap of SiZnSnO (SZTO) with different Si contents. Band gap engineering of SZTO is explained by the evolution of the electronic structure, such as changes in the band edge states and band gap. Using ultraviolet photoelectron spectroscopy (UPS), it was verified that Si atoms can modify the band gap of SZTO thin films. Carrier generation originating from oxygen vacancies can modify the band-gap states of oxide films with the addition of Si. Since it is not easy to directly derive changes in the band gap states of amorphous oxide semiconductors, no reports of the relationship between the Fermi energy level of oxide semiconductor and the device stability of oxide thin film transistors (TFTs) have been presented. The addition of Si can reduce the total density of trap states and change the band-gap properties. When 0.5 wt% Si was used to fabricate SZTO TFTs, they showed superior stability under negative bias temperature stress. We derived the band gap and Fermi energy level directly using data from UPS, Kelvin probe, and high-resolution electron energy loss spectroscopy analyses.

Original languageEnglish
Article number36504
JournalScientific reports
Volume6
DOIs
Publication statusPublished - 2016 Nov 4

Bibliographical note

Publisher Copyright:
© 2016 The Author(s).

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Engineering of band gap states of amorphous SiZnSnO semiconductor as a function of Si doping concentration'. Together they form a unique fingerprint.

Cite this