TY - JOUR
T1 - Enhanced biosynthesis of 2-deoxy-scyllo-inosose in metabolically engineered bacillus subtilis recombinants
AU - Lim, Joo Hyun
AU - Hwang, Hyun Ha
AU - Lee, Na Joon
AU - Lee, Jae Woo
AU - Seo, Eun Gyo
AU - Son, Hye Bin
AU - Kim, Hye Ji
AU - Yoon, Yeo Joon
AU - Park, Je Won
N1 - Funding Information:
This work was supported by the Cooperative Research Program for Agriculture Science & Technology Development [Grant No. PJ01317901] funded by the Rural Development Administration; the National Research Foundation of Korea [Grant Nos. 2015R1A2A2A01002524 and 2016 R1A2A1A05005078 (YY)] funded by the Ministry of Science, ICT and Future Planning, Republic of Korea.
Publisher Copyright:
© 2018 Lim, Hwang, Lee, Lee, Seo, Son, Kim, Yoon and Park.
PY - 2018/3/29
Y1 - 2018/3/29
N2 - 2-Deoxy-scyllo-inosose (DOI) has been a valuable starting natural product for the manufacture of pharmaceuticals or chemical engineering resources such as pyranose catechol. DOI synthase, which uses glucose-6-phosphate (Glc6P) as a substrate for DOI biosynthesis, is indispensably involved in the initial stage of the biosynthesis of 2- deoxystreptamine-containing aminoglycoside antibiotics including butirosin, gentamicin, kanamycin, and tobramycin. A number of metabolically engineered recombinant strains of Bacillus subtilis were constructed here; either one or both genes pgi and pgcA that encode Glc6p isomerase and phosphoglucomutase, respectively, was (or were) disrupted in the sugar metabolic pathway of the host. After that, three different DOI synthase–encoding genes, which were artificially synthesized according to the codon preference of the B. subtilis host, were separately introduced into the engineered recombinants. The expression of a natural btrC gene, encoding DOI synthase in butirosin-producing B. circulans, in the heterologous host B. subtilis (BSDOI-2) generated approximately 2.3 g/L DOI, whereas expression of an artificially codonoptimized tobC gene, derived from tobramycin-producing Streptomyces tenebrarius, into the recombinant of B. subtilis (BSDOI-15) in which both genes pgi and pgcA are disrupted significantly enhanced the DOI titer: Up to 37.2 g/L. Fed-batch fermentation by the BSDOI-15 recombinant using glycerol and glucose as a dual carbon source yielded the highest DOI titer (38.0 g/L). The development of engineered microbial cell factories empowered through convergence of metabolic engineering and synthetic biology should enable mass production of DOI. Thus, strain BSDOI-15 will surely be a useful contributor to the industrial manufacturing of various kinds of DOI-based pharmaceuticals and fine chemicals.
AB - 2-Deoxy-scyllo-inosose (DOI) has been a valuable starting natural product for the manufacture of pharmaceuticals or chemical engineering resources such as pyranose catechol. DOI synthase, which uses glucose-6-phosphate (Glc6P) as a substrate for DOI biosynthesis, is indispensably involved in the initial stage of the biosynthesis of 2- deoxystreptamine-containing aminoglycoside antibiotics including butirosin, gentamicin, kanamycin, and tobramycin. A number of metabolically engineered recombinant strains of Bacillus subtilis were constructed here; either one or both genes pgi and pgcA that encode Glc6p isomerase and phosphoglucomutase, respectively, was (or were) disrupted in the sugar metabolic pathway of the host. After that, three different DOI synthase–encoding genes, which were artificially synthesized according to the codon preference of the B. subtilis host, were separately introduced into the engineered recombinants. The expression of a natural btrC gene, encoding DOI synthase in butirosin-producing B. circulans, in the heterologous host B. subtilis (BSDOI-2) generated approximately 2.3 g/L DOI, whereas expression of an artificially codonoptimized tobC gene, derived from tobramycin-producing Streptomyces tenebrarius, into the recombinant of B. subtilis (BSDOI-15) in which both genes pgi and pgcA are disrupted significantly enhanced the DOI titer: Up to 37.2 g/L. Fed-batch fermentation by the BSDOI-15 recombinant using glycerol and glucose as a dual carbon source yielded the highest DOI titer (38.0 g/L). The development of engineered microbial cell factories empowered through convergence of metabolic engineering and synthetic biology should enable mass production of DOI. Thus, strain BSDOI-15 will surely be a useful contributor to the industrial manufacturing of various kinds of DOI-based pharmaceuticals and fine chemicals.
KW - 2-deoxy-scyllo-inosose
KW - 2-deoxy-scylloinosose synthase
KW - Artificial gene
KW - Bacillus subtilis
KW - Metabolic engineering
UR - http://www.scopus.com/inward/record.url?scp=85087493802&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2018.02333
DO - 10.3389/fmicb.2018.02333
M3 - Article
AN - SCOPUS:85087493802
SN - 1664-302X
VL - 9
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 2333
ER -