Abstract
Atomically controlled thin TiO2 layers were coated onto a carbon-supported Pt nanoparticle (Pt/C) surface using an atomic layer deposition (ALD) technique. Then, the resulting TiO2 coated Pt/C (ALD(TiO2)-Pt/C) was heat-treated at 150 °C under N2 atmosphere. The heat-treated ALD(TiO2)-Pt/C (ALD(TiO2)-Pt/C(150 H T)) catalyst demonstrated improved electrocatalytic glycerol oxidation reaction (GOR) activity with a turnover frequency (TOF) 3-times higher than for uncoated Pt/C catalyst. Interestingly, the ALD(TiO2)-Pt/C(150 H T) catalyst maintained its catalytic GOR performance after a cyclic voltammetry (CV) stability test of 1200 cycles, preventing Pt sintering due to strong Pt-TiO2 interaction. The reaction chemistry for GOR on the ALD(TiO2)-Pt/C(150 H T) catalyst also changed due to the newly created Pt-TiO2 interfaces, producing more oxidized chemicals such as glyceric acid and glycolic acid. The enhanced GOR performance is related to the formation of new Pt-O-Ti bonds and to change in the physicochemical properties of the Pt by interaction between the Pt nanoparticles and ALD-coated TiO2.
Original language | English |
---|---|
Article number | 119037 |
Journal | Applied Catalysis B: Environmental |
Volume | 273 |
DOIs | |
Publication status | Published - 2020 Sept 15 |
Bibliographical note
Publisher Copyright:© 2020 Elsevier B.V.
Keywords
- Atomic layer deposition
- Electrocatalytic oxidations
- Glycerol
- Platinum nanoparticle
- Titanium dioxide
ASJC Scopus subject areas
- Catalysis
- General Environmental Science
- Process Chemistry and Technology