Enhanced mobility of confined polymers

Kyusoon Shin, Sergei Obukhov, Jiun Tai Chen, June Huh, Yoontae Hwang, Soonchun Mok, Priyanka Dobriyal, Pappannan Thiyagarajan, Thomas P. Russell

Research output: Contribution to journalReview articlepeer-review

267 Citations (Scopus)


Non-classical behaviour, brought about by a confinement that imposes spatial constraints on molecules, is opening avenues to novel applications. For example, carbon nanotubes, which show rapid and selective transport of small molecules across the nanotubes, have significant potential as biological or chemical separation materials for organic solvents or gaseous molecules. With polymers, when the dimensions of a confining volume are much less than the radius of gyration, a quantitative understanding of perturbations to chain dynamics due to geometric constraints remains a challenge and, with the development of nanofabrication processes, the dynamics of confined polymers have significant technological implications. Here, we describe a weak molecular-weight-dependent mobility of polymers confined within nanoscopic cylindrical pores having diameters smaller than the dimension of the chains in the bulk. On the basis of the chain configuration along the pore axis, the measured mobility of polymers in the confined geometry is much higher than the mobility of the unconfined chain. With the emergence of nanofabrication processes based on polymer flow, the unexpected enhancement in flow and reduction in intermolecular entanglements are of significant importance in the design and execution of processingstrategies.

Original languageEnglish
Pages (from-to)961-965
Number of pages5
JournalNature Materials
Issue number12
Publication statusPublished - 2007 Dec
Externally publishedYes

Bibliographical note

Funding Information:
This work was supported by the Korea Research Foundation (MOEHRD, Basic Research Promotion Fund for new faculties, KRF-2006-331-D00160) and the Korea Science and Engineering Foundation (Basic Research Program, R01-2006-000-10749-0). K.S. and S.M. are indebted to the experimental support staff of the 4C2 beamline at the Pohang Light Source. T.P.R., P.D. and J.-T.C. were supported by the Department of Energy Basic Energy Sciences (DEFG0296ER45612) and the National Science Foundation-supported Material Research Science and Engineering Center at the University of Massachusetts, Amherst (DMR-0213695). S.O. acknowledges the support of Petroleum Research Grant PRF# 43923 -AC 7 and the hospitality of ICS Strasbourg. Use of IPNS was supported by the Department of Energy Basic Energy Sciences (DE-AC02-06CH11357). Correspondence and requests for materials should be addressed to K.S. or T.P.R.

ASJC Scopus subject areas

  • General Chemistry
  • General Materials Science
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering


Dive into the research topics of 'Enhanced mobility of confined polymers'. Together they form a unique fingerprint.

Cite this