Enhanced Motion Forecasting with Visual Relation Reasoning

Sungjune Kim, Hadam Baek, Seunggwan Lee, Hyung Gun Chi, Hyerin Lim, Jinkyu Kim, Sangpil Kim

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In this work, we emphasize and demonstrate the importance of visual relation learning for motion forecasting task in autonomous driving (AD). Since exploiting the benefits of RGB images in the existing vision-based joint perception and prediction (PnP) networks is limited in the perception stage, we delve into how the explicit utilization of the visual semantics in motion forecasting can enhance its performance. Specifically, this work proposes ViRR (Visual Relation Reasoning), which aims to provide the prediction module with complex visual reasoning of relationships among scene agents. To achieve this, we construct a novel visual scene graph, where the pairwise visual relations are first aggregated as each agent’s node feature. Then, the relations of the nodes are learned via higher-order relation reasoning method, which leverages the consecutive powers of the graph adjacency matrix. As a result, the extracted complex visual interrelations between the scene agents enable precise forecasting and provide explainable reasons for the model prediction. The proposed module is fully differentiable and thus can be easily applied to any existing vision-based PnP networks. We evaluate the motion forecasting performance of ViRR with challenging nuScenes benchmark and demonstrate its high necessity.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2024 - 18th European Conference, Proceedings
EditorsAleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol
PublisherSpringer Science and Business Media Deutschland GmbH
Pages311-328
Number of pages18
ISBN (Print)9783031729911
DOIs
Publication statusPublished - 2025
Event18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy
Duration: 2024 Sept 292024 Oct 4

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume15114 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference18th European Conference on Computer Vision, ECCV 2024
Country/TerritoryItaly
CityMilan
Period24/9/2924/10/4

Bibliographical note

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

Keywords

  • Autonomous Driving
  • Motion Forecasting

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Enhanced Motion Forecasting with Visual Relation Reasoning'. Together they form a unique fingerprint.

Cite this