Abstract
In this work, we emphasize and demonstrate the importance of visual relation learning for motion forecasting task in autonomous driving (AD). Since exploiting the benefits of RGB images in the existing vision-based joint perception and prediction (PnP) networks is limited in the perception stage, we delve into how the explicit utilization of the visual semantics in motion forecasting can enhance its performance. Specifically, this work proposes ViRR (Visual Relation Reasoning), which aims to provide the prediction module with complex visual reasoning of relationships among scene agents. To achieve this, we construct a novel visual scene graph, where the pairwise visual relations are first aggregated as each agent’s node feature. Then, the relations of the nodes are learned via higher-order relation reasoning method, which leverages the consecutive powers of the graph adjacency matrix. As a result, the extracted complex visual interrelations between the scene agents enable precise forecasting and provide explainable reasons for the model prediction. The proposed module is fully differentiable and thus can be easily applied to any existing vision-based PnP networks. We evaluate the motion forecasting performance of ViRR with challenging nuScenes benchmark and demonstrate its high necessity.
Original language | English |
---|---|
Title of host publication | Computer Vision – ECCV 2024 - 18th European Conference, Proceedings |
Editors | Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, Gül Varol |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 311-328 |
Number of pages | 18 |
ISBN (Print) | 9783031729911 |
DOIs | |
Publication status | Published - 2025 |
Event | 18th European Conference on Computer Vision, ECCV 2024 - Milan, Italy Duration: 2024 Sept 29 → 2024 Oct 4 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 15114 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 18th European Conference on Computer Vision, ECCV 2024 |
---|---|
Country/Territory | Italy |
City | Milan |
Period | 24/9/29 → 24/10/4 |
Bibliographical note
Publisher Copyright:© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
Keywords
- Autonomous Driving
- Motion Forecasting
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science