Abstract
A flexible and bioactive scaffold for adipose tissue engineering was fabricated and evaluated by dual nozzle three‐dimensional printing. A highly elastic poly (L‐lactide‐co‐ε‐caprolactone) (PLCL) copolymer, which acted as the main scaffolding, and human adipose tissue derived decel-lularized extracellular matrix (dECM) hydrogels were used as the printing inks to form the scaf-folds. To prepare the three‐dimensional (3D) scaffolds, the PLCL co‐polymer was printed with a hot melting extruder system while retaining its physical character, similar to adipose tissue, which is beneficial for regeneration. Moreover, to promote adipogenic differentiation and angiogenesis, adipose tissue‐derived dECM was used. To optimize the printability of the hydrogel inks, a mixture of collagen type I and dECM hydrogels was used. Furthermore, we examined the adipose tissue formation and angiogenesis of the PLCL/dECM complex scaffold. From in vivo experiments, it was observed that the matured adipose‐like tissue structures were abundant, and the number of matured capillaries was remarkably higher in the hydrogel–PLCL group than in the PLCL‐only group. Moreover, a higher expression of M2 macrophages, which are known to be involved in the remodeling and regeneration of tissues, was detected in the hydrogel–PLCL group by immunofluores-cence analysis. Based on these results, we suggest that our PLCL/dECM fabricated by a dual 3D printing system will be useful for the treatment of large volume fat tissue regeneration.
Original language | English |
---|---|
Article number | 2886 |
Pages (from-to) | 1-22 |
Number of pages | 22 |
Journal | International journal of molecular sciences |
Volume | 22 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2021 Mar 2 |
Bibliographical note
Funding Information:This research was supported by the KIST Institutional Program (2V08550), a grant of the Basic Science Research Program (2021R1A2C2004634) through the National Research Foundation of Korea funded by the Ministry of Science and ICT, and the Technology Innovation Program (Project No. 20008686) funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).
Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Keywords
- 3d printing
- Adipose tissue regeneration
- Angiogenesis
- DECM hydrogel
- Decellularization
- PLCL
ASJC Scopus subject areas
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry