Abstract
In this study, the photocatalytic ozonation process using either UV lamps with a wavelength close to a solar wavelength (UVsolar) or natural solar light was established to study the effects of the major operating parameters on the removal of a toxic disinfection by-product (DBP), dichloroacetonitrile (DCAN), from drinking water. Based on the test results of a bench system, the UVsolar/TiO2/O3 process had the highest DCAN-removal rate among the advanced oxidation processes (AOPs). The optimal TiO2 and ozone doses were 1gL-1 and 1.13gL-1h-1, respectively, while room temperature (20°C) produced the highest rate constant in the kinetic tests. The kinetic rate constants linearly increased when the UVsolar intensity increased in the range 4.6-25Wm-2; however, it increased less at intensities higher than 25Wm-2. The test results of the outdoor system showed that the solar/TiO2/O3 process provided complete removal of DCAN that was two times faster and had about 4.6 times higher energy efficiency than with solar/TiO2. As a green oxidation technique, solar photocatalytic ozonation could be a good alternative for treating recalcitrant and toxic organic pollutants, because it has high oxidation potential and low energy consumption compared to conventional AOPs.
Original language | English |
---|---|
Pages (from-to) | 2901-2908 |
Number of pages | 8 |
Journal | Chemosphere |
Volume | 93 |
Issue number | 11 |
DOIs | |
Publication status | Published - 2013 Nov |
Bibliographical note
Funding Information:This work was supported by the Basic Science Research Program of a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (KRF-2009-0092799 and NRF-2013R1A1A2006586).
Keywords
- Dichloroacetonitrile
- Oxidation
- Ozonation
- Photocatalysis
- Solar
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- General Chemistry
- Pollution
- Health, Toxicology and Mutagenesis