Enhanced stability of heterologous proteins by supramolecular self-assembly

Jin Seung Park, Ji Young Ahn, Sung Hyun Lee, Hyewon Lee, Kyung Yeon Han, Hyuk Seong Seo, Keum Young Ahn, Bon Hong Min, Sang Jun Sim, Insung S. Choi, Yang Hoon Kim, Jeewon Lee

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)


Recently, we reported on the dual function of human ferritin heavy chain (hFTN-H) used for the fusion expression and solubility enhancement of various heterologous proteins: (1) high-affinity interaction with HSP70 chaperone DnaK and (2) formation of self-assembled supramolecules with limited and constant sizes. Especially the latter, the self-assembly function of hFTN-H is highly useful in avoiding the undesirable formation of insoluble macroaggregates of heterologous proteins in bacterial cytoplasm. In this study, using enhanced green fluorescent protein (eGFP) and several deletion mutants of Mycoplasma arginine deiminase (ADI132-410) as reporter proteins, we confirmed through TEM image analysis that the recombinant fusion proteins (hFTN-H::eGFP and hFTN-H::ADI132-410) formed intracellular spherical particles with nanoscale diameter (≈10 nm), i.e., noncovalently cross-linked supramolecules. Surprisingly, the supramolecular eGFP and ADI showed much enhanced stability in bioactivity. That is, the activity level was much more stably maintained for the prolonged period of time even at high temperature, at high concentration of Gdn-HCl, and in wide range of pH. The stability enhancement by supramolecular self-assembly may make it possible to utilize the protein supramolecules as novel means for drug delivery, enzymatic material conversion (biotransformation), protein chip/sensor, etc. where the maintenance of protein/enzyme stability is strictly required.

Original languageEnglish
Pages (from-to)347-355
Number of pages9
JournalApplied Microbiology and Biotechnology
Issue number2
Publication statusPublished - 2007 May

Bibliographical note

Funding Information:
Acknowledgment This study was supported by a grant (A050750) of the Korea Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea. This work was also supported by the Korea Science and Engineering Foundation Grant (R01-2005-000-10355-0) and the Korea Research Foundation Grant (KRF-2004-005-D00057).


  • Enhanced stability
  • Human ferritin heavy chain
  • Self-assembly
  • Supramolecules

ASJC Scopus subject areas

  • Biotechnology
  • Applied Microbiology and Biotechnology


Dive into the research topics of 'Enhanced stability of heterologous proteins by supramolecular self-assembly'. Together they form a unique fingerprint.

Cite this