Abstract
In recent studies, we have witnessed the applicability of deep learning methods on resting-state functional Magnetic Resonance Image (rs-fMRI) analysis and on its use for brain disease diagnosis, e.g., early Mild Cognitive Impairment (eMCI) identification. However, to our best knowledge, many of the existing methods are generally limited from improving the performance in a target task, e.g., eMCI diagnosis, by the unexpected information loss in transforming an input into hierarchical or compressed representations. In this paper, we propose a novel network architecture that discovers enriched representations of the spatio-temporal patterns in rs-fMRI such that the most compressed or latent representations include the maximal amount of information to recover the original input, but are decomposed into diagnosis-relevant and diagnosis-irrelevant features. In order to learn those favourable representations, we utilize a self-attention mechanism to explore spatially more informative patterns over time and information-oriented techniques to maintain the enriched but decomposed representations. In our experiments over the ADNI dataset, we validated the effectiveness of the proposed network architecture by comparing its performance with that of the counterpart methods as well as the competing methods in the literature.
Original language | English |
---|---|
Title of host publication | Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings |
Editors | Anne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 397-406 |
Number of pages | 10 |
ISBN (Print) | 9783030597276 |
DOIs | |
Publication status | Published - 2020 |
Event | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru Duration: 2020 Oct 4 → 2020 Oct 8 |
Publication series
Name | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
---|---|
Volume | 12267 LNCS |
ISSN (Print) | 0302-9743 |
ISSN (Electronic) | 1611-3349 |
Conference
Conference | 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 |
---|---|
Country/Territory | Peru |
City | Lima |
Period | 20/10/4 → 20/10/8 |
Bibliographical note
Funding Information:Acknowledgement. This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1006543) and partially by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2019-0-00079, Artificial Intelligence Graduate School Program (Korea University)).
Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
Keywords
- Brain disease diagnosis
- Deep learning
- Early Mild Cognitive Impairment
- Mutual information
- Resting-state functional magnetic resonance imaging
- Self-attention
ASJC Scopus subject areas
- Theoretical Computer Science
- General Computer Science